
Marshall-Olkin Generalized Distributions and
Their Applications

MAJOR RESEARCH PROJECT REPORT

By

Dr. K.K.JOSE
Professor(Rtd.), Department of Statistics

St. Thomas College, Pala

Co-Investigator

REMYA SIVADAS
Department of Statistics

St. Thomas College, Pala,

Arunapuram P.O., Kerala - 686 574, India

Website: www.stcp.ac.in

July 2015



Marshall-Olkin Generalized Distributions and
Their Applications

PROJECT REPORT
Major Research Project No. F.41-808/2012(SR) dated 18 July 2012

By

Dr. K.K.JOSE
Professor(Rtd.), Department of Statistics

St. Thomas College, Pala

Project Fellow

REMYA SIVADAS
Department of Statistics

St. Thomas College, Pala,

Arunapuram P.O., Kerala - 686 574, India

Website: www.stcp.ac.in

July 2015



15-07-2015

Dr. K.K. Jose

Professor(Rtd.)

ACKNOWLEDGEMENTS

The principal investigator acknowledges the financial assistance from the

University Grants Commission, New Delhi for supporting this research un-

der a major research project No. F.41-808/2012(SR) dated 18 July 2012.

The project fellow Mrs.Remya Sivadas has sincerely co-operated in the suc-

cessful completion of this work. She has also completed her research as

part of this project and was able to submit the Ph.D. Thesis in time. Many

other faculty members and research scholars also co-operated in this work.

We are grateful to Dr. Miroslav Ristic, Dr.Ancy Joseph, Dr.E.Krishna,Dr.Alice

Thomas, Dr.Rani Sebastian and Dr. Manu Mariam Thomas who have

helped in the computation works and data analysis.

This project work has helped in generalizing the Marshall-Olkin distribu-



tions and developing new autoregressive time series models. We have ap-

plied the results to data sets from different contexts like industry, hydrology,

biostatistics etc. The models have been applied in reliability and informa-

tion theory, stress-strength analysis, acceptance sampling, entropy, record

values, order statistics etc. Various autoregressive minification processes

have also been developed. Maximum likelihood estimates of the parame-

ters have been obtained and necessary R programs were developed. Thus

the study has contributed to the advancement of new knowledge with ap-

plications in a wide range of contexts. The study has resulted in the pub-

lication of more than 5 research papers and a Ph.D.Thesis. A few more

research papers have been communicated for publication in reputed inter-

national journals.

We are grateful to the Principal, St.Thomas College, Pala as well as the

Head of the Department of Statistics for providing all facilities for the timely

completion of this project.

Dr. K.K. Jose

(Invesigator)

4



Abstract and Keywords

The main objectives of this project work are concerned with the study on some general-

izations of Marshall-Olkin family of distributions like Exponential, Weibull, Fréchet, Lindley,

Pareto, Rayleigh etc and their applications in various areas such as time series mod-

elling, autoregressive minification processes, reliability analysis, record value theory, ac-

ceptance sampling, etc. We consider two different generalizations of the Marshall-Olkin

family namely the Exponentiated Marshall-Olkin family, Negative Binomial Extreme Stable

family.

Chapter 1 is an introductory one with a review of literature and a brief summary of the

work. In chapter 2 we introduce Marshall-Olkin extended exponential distribution. We con-

sider hazard rate function, record values etc. We estimate the parameters and describe

various applications of the new distribution. We derive the BLUE’s of location and scale

parameters of the model using upper records.Using BLUE the 95% confidence interval

for the parameters are also obtained.The results are verified and the future records are

predicted from simulated data sets. Stress-strength analysis is carried out and the results

are verified by simulation. A minification process is developed and sample path proper-

ties are explored.Parameters of the process are estimated and the results are verified by

simulation studies.

Chapter 3 is devoted to introduction of Marshall-Olkin extended Fréchet distribution

and derivation of its properties. The distribution of sample extremes, Renyi entropy, order

statistics, etc are obtained. The new model is then compared with the Fréchet , the expo-

nentiated Fréchet and beta Fréchet distributions using a real data set on the survival times

of injected guinea pigs and proved to be a better fit.

Chapter 4 is dedicated to various applications of Marshall-Olkin extended Fréchet

distribution specifically in estimation of reliability under stress- strength model and estab-

lishing the validity of estimate through simulation,developing a suitable sampling plan for a

product with life time following the new model and and four different minification processes

and its properties.



In chapter 5, we concentrate on the Marshall-Olkin Exponentiated Generalized Expo-

nential distribution and its applications. Various properties are explored. The maximum

likelihood estimates are obtained and the models are applied to a real data set on carbon

fibers. Stress-strength analysis with respect to the model is also carried out. R programs

necessary for computation are also developed.

Chapter 6 deals with a new distribution namely, Marshall-Olkin Exponentiated Gen-

eralized Fréchet distribution and its applications. Quantiles and order statistics of the

distributions are obtained. Estimates of the parameters of the distribution are obtained

and applied to a real data set. Reliability of a system following the new distribution under

stress- strength model is estimated and simulation studies are carried out for establishing

the validity of the estimates. The R program developed is also given.

In Chapter 7, we introduce the Exponentiated Marshall-Olkin Exponential and Weibull

distribution. Various properties are studied including quantiles, order statistics, record val-

ues and Renyi entropy. Estimation of parameters is also considered. A real data set is

analyzed as an application. Chapter 8 deals with the Negative binomial extreme stable

Marshall-Olkin extended Lindley distribution and its properties. We consider the proper-

ties of Extended Lindley distribution. The expression for quantiles and the distribution of

order statistics are derived. Distribution of the record values is obtained. The maximum

likelihood estimates are obtained and applied to a real data set on failure times of air

conditioning system of an air plane.

Chapter 9 concentrates on Negative binomial extreme stable Marshall-Olkin Pareto

distribution. We develop reliability test plans for acceptance or rejection of a lot of products

submitted for inspections with lifetime following the new distribution. The results are illus-

trated by numerical examples. In chapter 10, we introduce a new distribution namely, the

Negative binomial Marshall-Olkin Rayleigh distribution. Various properties are discussed.

Maximum likelihood estimates are obtained and applied to a real data set on remission

times of bladder cancer patients. The results are useful in constructing a suitable sam-

pling plan for a product with the new distribution as lifetime.
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CHAPTER 1

Introduction and Summary

1.1 Introduction

The main objective of this research work is to study some Generalizations of Marshall-

Olkin family of distributions and their applications. The study is mainly concentrated on

some generalized Marshall-Olkin distributions like Exponential, Weibull, Fréchet, Lindley,

Pareto, Rayleigh etc and their applications in various areas of statistical theory such as re-

liability analysis, record value theory, acceptance sampling, etc. Statistical modeling, sim-

ulation studies and inference are the principal areas of exploratory data analysis. Different

generalizations of Marshall-Olkin family of distributions have been discussed by many au-

thors. Various lifetime models are used for the probabilistic analysis of the lifelength of a

system or a device. Such distributions are most frequently used in the fields like medicine,

engineering etc. Many parametric models such as exponential, gamma, Weibull are com-

monly used in statistical literature to analyze lifetime data.

Exponential and Weibull distribution play central role in reliability theory and survival
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analysis. Pareto distribution and Burr distribution are used for modeling and predicting a

wide variety of socioeconomic variables such as size of income, wealth etc. The Rayleigh

distribution is used to model wave heights in oceanography, and electromagnetic signals in

communication theory. Lindley model is useful to analyze lifetime data, especially in model-

ing stress-strength reliability. Fréchet distribution is useful for modeling and analysis of sev-

eral extreme events ranging from accelerated life testing to earthquakes,floods,rainfall,sea

currents and wind speeds.

1.2 Review of Literature

Adding parameters to a well-established distribution is a time honored device for obtain-

ing more flexible new families of distributions. Marshall and Olkin (2007) discussed an

interesting method of adding a new parameter to an existing distribution. It includes the

baseline distribution as a special case and gives more flexibility to model various types

of data. Introduction of a scale parameter leads to the accelerated life model, and tak-

ing powers of the survival function introduces a parameter that leads to the proportional

hazards model. For instance, the family of Weibull distributions contains the exponential

distributions and is constructed by taking powers of exponentially distributed random vari-

ables. The family of gamma distributions also contains the exponential distributions, and

is constructed by taking sum of independent and identically distributed(i.i.d) exponential

random variables. The MO family of distributions arises in different contexts and is known

under various names such as the proportional odds family or proportional odds model or

family with tilt parameter or proportional hazards family or proportional reverse hazards

family etc.

1.2.1 Marshall-Olkin family of Distributions

Marshall-Olkin (1997) introduced a new family of distributions by introducing a new param-

eter to existing family of distributions. If F̄ (x) is a survival function, then the new family

2
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has survival function given by

Ḡ(x) =
αF̄ (x)

1− (1− α)F̄ (x)
, 0 < α <∞,−∞ < x <∞ (1.2.1)

This family of distributions possesses very interesting properties. Let X1, X2, ... be a

sequence of independent and identically distributed random variables with survival function

F̄ (x) and let UN = min(X1, X2, ..., XN) where N is a geometric random variable with

P (N = n) = α(1 − α)n−1; 0 < α < 1, Xi’s and N are independent. Then UN has

a survival function given by (1.2.1). If α > 1 and VN = max(X1, X2, ..., XN) where N

follows geometric distribution with P (N = n) = α−1(1 − α−1)n−1, then VN also has the

survival function given by (1.2.1). This property is usually known as geometric extreme

stability. The probability function and hazard rate function corresponding to (1.2.1) can be

obtained as

g(x, α) =
αf(x)

(1− ᾱF̄ (x))2
(1.2.2)

and

h(x, α) =
rF (x)

(1− ᾱF̄ (x))
(1.2.3)

where f(x) and rF (x) are the p.d.f. and hazard rate function corresponding to F̄ (x).

This family can be considered as exponential compounding models.

This family has connections to reliability contexts also, with respect to proportional

odds models. Sankaran and Jayakumar (2008) presented the physical interpretation of

Marshall-Olkin family in the context of proportional odds model. Let X be distributed with

survival function F̄ (x) and let z = (z1, z2, ..., zp)
T be a co variate vector of order p. Then

the survival function of the proportional odds model is given by
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Ḡ(x|z) =
k(z)F̄ (x)

1− (1− k(z))F̄ (x)

where k(z) = λG(x)
λF (x;z)

, a non negative function of co-variate z, λF (x; z) is the pro-

portional odds function corresponding to F̄ (x) and λG(x) represents an arbitrary odds

function with respect to Ḡ(x). When k(z) = α, a constant, then Ḡ reduces to the family

given by (1.2.1).

Many authors have proposed various univariate distributions belonging to the Marshall-

Olkin family of distributions such as Marshall-Olkin Weibull [Ghitany et al. (2005)], Marshall-

Olkin Pareto [Alice and Jose (2003)], Marshall-Olkin semi-Weibull [Alice and Jose (2005)],

Marshall- Olkin Lomax [Ghitany et al. (2007)], Marshall-Olkin semi Burr and Marshall-Olkin

Burr[Jayakumar and Thomas (2008)] and Marshall-Olkin q-Weibull [Jose et al.(2010)].

Jose et al. (2011) consider bivariate Marshall-Olkin Weibull distributions and processes.

Krishna et.al (2013a,b) introduced Marshall-Olkin Fréchet distribution and discussed a

number of applications. Jose et al.(2013) discussed MarshallOlkin MorgensternWeibull

distribution and its applications.

1.2.2 Exponentiated Marshall-Olkin family

Exponentiated Marshall-Olkin family was introduced by Jayakumar and Thomas (2008)

as a generalization of Marshall-Olkin family of distributions and is characterized by the

survival function given by

Ḡ(x) =

(
αF̄ (x)

1− ᾱF̄ (x)

)γ
; α > 0, γ > 0, x ∈ R (1.2.4)

These can be regarded as Gamma compounding models. When γ = 1, G(x) be-

comes the Marshall-Olkin family given by (1.2.1).
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The probability density function is given by

g(x;α, γ) =
γαγ(F̄ (x))γ−1f(x)

[1− ᾱF̄ (x)]γ+1
;α > 0, γ > 0

and hazard rate function is given by

h(x;α, γ) =
γrF (x)

(1− (1− α)F̄ (x))
;α > 0, γ > 0

where f(x) and rF (x) are the p.d.f. and hazard rate function corresponding to F̄ (x).

1.2.3 Negative Binomial Extreme Stable family

Nadarajah et al.(2012) introduced another generalization of Marshall-Olkin family of dis-

tribution. Let X1, X2, ... be a sequence of independent and identically distributed random

variables with survival function F̄ (x). Suppose N is independent of Xi’s with a truncated

negative binomial distribution with probability density function

P (N = n) =
αγ

1− αγ

(
γ + n− 1

γ − 1

)
(1− α)n; γ > 0, 0 < α < 1, n = 1, 2, ...

Consider UN = min(X1, X2, ..., XN) , then

ḠU(x) =
αγ

1− αγ
∞∑
n=1

(
γ + n− 1

γ − 1

)(
(1− α)F̄ (x)

)n
=

αγ

1− αγ
[(
F (x) + αF̄ (x)

)−γ − 1
]

(1.2.5)

Similarly when α > 1, consider VN = max(X1, X2, ..., XN) where N follows truncated

negative binomial random variables with parameters α−1 and γ > 0. Then the survival

function of VN is given by (1.2.5). This property may be referred to as Negative Binomial

5



CHAPTER 1. INTRODUCTION AND SUMMARY

Extreme Stability. The probability density function and hazard rate function corresponding

to (1.2.5) is given by

g(x;α, γ) =
(1− α)γαγf(x)

(1− αγ)(F (x) + αF̄ (x))γ+1
; x > 0, α > 0, γ > 0

and

h(x;α, γ) =
(1− α)γF̄ (x)rF (x)

(F (x) + αF̄ (x))(1− (F (x) + αF̄ (x))γ)

where f(x) and rF (x) are the p.d.f. and hazard rate function corresponding to F̄ (x).

The new family in (1.2.5) can be interpreted as follows. Suppose the failure times

of a device are observed. Every time a failure occurs the device is repaired to resume

function. Suppose also that the device is deemed no longer useable when a failure occurs

that exceeds a certain level of severity. Let X1, X2, ... denote the failure times and let N

denote the number of failures. Then UN will represent the time to the first failure of the

device and VN will represent the lifetime of the device. Therefore, (1.2.5) could be used to

model both the time to the first failure and the lifetime.

1.3 Applications

In this section we consider some applications of the new distributions introduced in the

thesis. We have considered applications in the theory of record values, entropy analysis,

reliability modeling, stress-strength analysis, acceptance sampling and inspection plans.

1.3.1 Record Values

Let X1, X2, ... be a sequence of i.i.d random variables with common distribution function F.

An observation Xj will be called a record (upper record) if it exceeds in value all preceding

observations, i.e., if Xj > Xi, for every i < j. Let Xj be observed time at j. The sequence

of record times Tn;n ≥ 0 is defined as T0 = 1 with probability 1 and for n > 1, Tn =
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min{j;Xj > XTn−1}. Let Rn be the record value sequence defined as Rn = XTn ;n =

0, 1, 2... and is called nth record. R0 is the reference value or trivial record. Let gRn(x)

denote the probability density function of nth record and is given by

gRn(x) =
g(x)(H(x))n−1

(n− 1)!
;−∞ < x <∞ (1.3.1)

where H(x) = −log(1−G(x)).

Then the joint pdf of mth and nth record statistics is given by

gRm,Rn(x, y) =
(H(x))m−1

(m− 1)!

(H(y)−H(x))n−m−1

(n−m− 1)!

g(x)g(y)

1−G(x)
;−∞ < x < y <∞ (1.3.2)

where H(x) = −log(1−G(x)) and H(y) = −log(1−G(y)).

Chandler (1952) introduced the concept of record values in statistical theory. Feller

(1966) gave some examples of record values with respect to gambling problems. Record

values are used in industrial stress testing, meteorological analysis, sporting and athletic

events, and oil and mining surveys etc. It is closely related to order statistics. The recent

works of record value theory and its applications are available in Ahsanullah (1995,1997),

Balakrishnan and Ahsanullah (1994), Arnold et al.(1998), Raqab (2001), Bieniek and Szy-

nal (2002), Saran and Singh (2008), Jose et al.(2014) discussed applications of Marshall-

Olkin family in the context of record values and reliability theory. In the thesis we consider

various applications in record value theory.

1.3.2 Entropy Analysis

Entropy is a measure of uncertainty. In 1865, the German physicist Rudolf Clausius Shan-

non introduced the term entropy. Various entropy measures have been developed by math-

ematicians, engineers and Physicists to describe several phenomena, in the context of

communications theory. In 1875, the Austrian physicist Ludwig Boltzmann and the Ameri-
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can scientist Willard Gibbs put entropy into the probabilistic setup of statistical mechanics.

In 1948, an American electrical engineer and mathematician Claude E.Shannon applied

the theory of entropic functional in the theory of digital communications with the discrete

form s = −k
n∑
i=1

pi ln(pi), called Shannons entropy. The concept of entropy has been suc-

cessfully applied in a variety of fields including statistical mechanics, statistical information

theory, stock market analysis, queuing theory, image analysis, reliability estimation,etc.

(see,e.g., Kapur (1993)). Ebrahimi (2000) discussed the maximum entropy method for life

time distributions. Mathai and Rathie (1975) consider various generalizations of Shannon

entropy measure and describe various properties including additivity, characterization the-

orem etc. Mathai and Haubold (2007) introduced a new generalization of the Shannon

entropy measure using a general class of distributions called pathway distributions. Jose

and Shanoja (2008) showed that pathway model can be obtained by optimizing Mathai’s

generalized entropy with a more general setup, which is a generalization of various entropy

measures due to Shannon and others. In the thesis we consider Shannon entropy, Rényi

entropy etc.

1.3.3 Stress-Strength Reliability Modeling

The stress-strength reliability analysis is concerned with an assessment of reliability of a

system in terms of random variables X representing stress and Y representing the strength.

If the stress exceeds strength the system would fail. The term stress-strength was first

introduced by Church and Harris (1970). The stress-strength reliability can be defined

as R = P (X < Y ). Gupta et al (2010) obtained various results on the MO family in the

context of reliability modeling and survival analysis. For more details see, Kotz et al.(2003),

Kundu and Gupta (2005,2006), Raqab and Kundu (2005), Kundu and Raqab (2009), Bindu

(2011), Krishna et al.(2013b) etc.

8
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1.3.4 Acceptance Sampling Inspection Plans

Acceptance sampling is a statistical procedure used in quality control and it involves sam-

pling inspection in which decisions are made to accept or reject products or services. Ac-

ceptance sampling is developed by Dodge and Roming (1959). Two types of acceptance

sampling are (1) Attributes sampling, in which the presence or absence of a characteristic

in the inspected item is only taken note of, and (2) Variable sampling, in which the presence

or absence of a characteristic in the inspected item is measured on a predetermined scale.

Kantam et al.(2001), Rosaiah et al.(2005), Rao et al.(2009), Lio et al.(2010), Krishna et

al.(2013), Kantam and Sriram (2010), Jose et al.(2011) etc have discussed acceptance

sampling plans for various distributions. Rao (2010) developed a group acceptance sam-

pling plan for a truncated life test when the lifetime of an item follows Marshall-Olkin ex-

tended Lomax distribution.

1.3.5 Exponentiated Generalized Distributions

Gupta et al.(1998) introduced exponentiated exponential distribution as a generalization of

standard exponential distribution. Nadarajah and Kotz (2006) proposed the exponentiated

gamma, exponentiated Fréchet and exponentiated Gumbel distributions. Cordeiro et al.

(2013) proposed a new class of distributions that extend the exponentiated generalized

type distributions. Given a continuous cdf G(x), the cdf of the Exponentiated Generalized

(EG) class of distributions is of the form

F (x) = [1− {1−G(x)}α]β (1.3.3)

where α > 0 and β > 0 are two additional shape parameters. The base line dis-

tribution G(x) is a special case of (1.3.3) when α = β = 1. When α = 1, it reduces to

the exponentiated type distributions. The probability density function of the exponentiated

9



CHAPTER 1. INTRODUCTION AND SUMMARY

generalized class of distributions is given by

f(x) = αβ{1−G(x)}α−1[1− {1−G(x)}α]β−1g(x) (1.3.4)

The exponentiated generalized densities allow for greater flexibility of tails and can

be widely applied in many areas of engineering and biology. Eugene et al.(2002) dis-

cussed the beta generalized family, which includes two extra parameters but involves

the beta incomplete function. The recent work in exponentiated generalized distributions

are Lemonte and Cordeiro(2011), Cordeiro et al.(2011), Sarhan et al.(2013), Elbatal and

Muhammed(2014) etc.

1.3.6 Time Series Modelling

Time series modelling and analysis has become one of the most important and widely used

branches of mathematical statistics. Application of this branch of statistics includes finan-

cial modelling, economic forecasting,stock market analysis,seismological studies, study

of biological data, neuro physiology,astro physics and communications engineering. The

experimental data that have been observed at different points in time leads to a time se-

ries.A basic assumption in any time series analysis or modeling is that some aspects of

the past pattern will continue to remain in the future. Also under this setup often the time

series process is assumed to be based on past values of the main variable but not on ex-

planatory variables which may affect the variables or system.Time series models usually

represents a stochastic process and can have many forms. The three important mod-

els mainly used are autoregressive models(AR),the integrated models(I),and the moving

average model(MA).These three models combined to get autoregressive moving aver-

age(ARMA) and autoregressive integrated moving average(ARIMA) models. An important

class of stochastic models for describing time series , which has received a great deal

of attention is the so called stationary models which assume that the process remains in

equilibrium about a constant mean level.More precisely, stationarity implies that the joint

probability distribution of the process is invariant over time. The time series Xt is said to
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be stationary if, for any t1, t2, ..., tn ∈ Z, and n = 1, 2, . . . ,

Fxt1 ,xt2 ,...,xtn (x1, x2, ..., xn) = Fxt1+k,xt2+k,...,xtn+k
(x1, x2, ..., xn)

where F denotes the distribution function of the set of random variables.

1.3.7 Autoregressive process

In statistics and signal processing an autoregressive model is a type of random process

which is often used to model and predict various type of natural phenomena. The autore-

gressive model is one of a group of linear prediction formulae that attempt to predict an

output of a system based on the previous observations. The notation AR(p) indicates an

autoregressive model of order p. The AR(p) model is defined as

Xn =

p∑
i=1

aiXn−i + εn

where a1, ....ap are parameters of the model, ap 6= 0 and {εn} an innovation process of

independently and identically distributed random variables to ensure that {Xn} is a sta-

tionary Markov process with a specified marginal distribution function F(x). In the literature

most processes are assumed to have gaussian distribution.See(Van Trees(1968)).This

is widely preferred ,since most parameter estimation techniques can lead to analytically

tractable solutions under this assumption.More over this assumption has been based on

the central limit theorem and is valid for processes having finite variance. Therefore pro-

cesses having infinite variances can not be modeled as gaussian.Such processes are

called non-gaussian processes and are represented by other distributions in the litera-

ture.There is also emperical evidence that many real life time series are non-Gaussian

and have structure that change over time.

Several authors introduced non Gaussian process with specified marginals. Tavares

(1980) introduced the exact distribution of extremes of a non-Gaussian process,Gawer
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and Lewis (1980) developed first order autoregressive gamma sequences and point pro-

cesses.Brown et al (1984)described the need for constructing time series models with

Weibull marginal distribution for the modeling of wind velocity data.Gibson(1986) describes

the use of autoregressive processes with Laplace marginal distribution for image source

modeling.Yeh et al(1988) developed Pareto process. Pillai(1991) studied semi-Pareto pro-

cesses. Jayakumar and Pillai(1993) introduced autoregressive Mittag- leffler process.

Anderson and Arnold (1993) described the use of Linnik marginal distribution in model-

ing stock price returns and other financial data. Balakrishna(1998) considered estima-

tion for the semi-Pareto process.Nielson and Shephard(2003)discussed likelihood anal-

ysis of a first order autoregressive model with exponential innovations.Jayakumar and

Thomas(2004) studied semi logistic process and Jayakumar (2006)developed an autore-

gressive model for Asymmetric Laplace distribution.

1.3.8 Minification Process

Minification process is another non-linear autoregressive model available in literature. Tavares

(1980) introduced a minification process of the form

Xn = k min(Xn− 1, εn), n ≥ 1

wherek ≥ 1 and {εn, n ≥ 1} is an innovation process of identically and independently dis-

tributed random variables. Lewis and McKenzie (1991) introduced first order minification

process having the structure

Xn = k Xn−1 with probability p

= k min(Xn−1, εn) with probability 1-p

12
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where {εn} is a sequence of identically and independently distributed random variables

independent of Xn. Another form of minification process is the one having the structure

Xn = k εn with probability p

= k min(Xn−1, εn) with probability 1-p

Sim(1994) introduced the minification process with Weibull marginal distribution.Arnold

and Robertson(1989)introduced a logistic minification process.Pillai et al(1995) discussed

autoregressive minification process and universal geometric minima.Balakrishna and Ja-

cob(2003) estimated the parameters of minification process.Alice and Jose (2003) in-

troduced Marshall-Olkin Pareto process.Alice and Jose(2005) developed Marshall-Olkin

semi-Weibull minification process. Some bivariate and multivariate minification processes

are introduced and studied by Balakrishnan and Jayakumar(1997), Thomas and Jose

(2002,2004), Ristic(2006), Thomas and Jayakumar (2008), Naik and Jose (2008), Ancy

et al.(2009)

1.3.9 Autocorrelation and Auto Covariance

Auto correlation is the internal correlation of the observations in a time series,usually ex-

pressed as a function of the time lag between observations.The autocorrelation at lag

k,γ(k) is defined mathematically as

γ(k) =
E(Xt − µ)(Xt+k − µ)

E(Xt − µ)2

whereXt, t = 0,±1,±2, ... represent the values of series and µ is the mean of the series.A

plot of the sample values of the autocorrelation against the lag is known as the autocor-

relation function and is a basic tool in the analysis of time series particularly for indicating

possibly suitable models for the series.
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1.4 Summary of the present work

The following are the objectives of the study.

1. To study generalizations of Marshall-Olkin family of distributions such as Exponenti-

ated Marshall-Olkin family, Negative Binomial Extreme Stable family and Harris fam-

ily.

2. To develop generalizations of life distributions like, Exponential, Weibull, Fréchet,

Lindley, Pareto, Rayleigh, Weibull etc and to study various properties of these distri-

butions.

3. To obtain maximum likelihood estimates of the parameters using R programm.

4. To develop new time series models and autoregressive minification processes.

5. To apply these distributions in various areas such as record values and reliability

modeling.

6. To estimate reliability for stress-strength analysis using MATLAB.

7. To develop the acceptance sampling and reliability test plans with respect to some

of these distributions.

The research concentrates on various generalizations of Marshall-Olkin family of distribu-

tions. The project report consists of 10 chapters. Chapter 1 covers an introduction to the

topic of study as well as a brief review of literature and basic concepts. In chapter 2, a

detailed study on the record value theory associated with Marshall-Olkin extended expo-

nential distribution is conducted. Using the mean, variance and covariance of upper record

values of the extended model BLUE’s of location and scale parameters are obtained and

future records are predicted which has a number of practical uses. The 95% confidence

interval for location and scale parameters are also computed. MATLAB programs are de-

veloped for this purpose. The result is verified for a real data set. Entropy of record values
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are derived. Stress-strength analysis is carried out and the validity of the estimate of re-

liability so obtained is studied through simulation studies. Parameter estimation of AR(1)

minification process already developed is done and the result is verified for a simulated

data. The auto covariance function and auto correlation function at lag 1 are obtained and

graphs are drawn for the same.

Chapter 4 is devoted to the discussion of the newly developed distribution called

Marshall-Olkin extended Fréchet distribution. A detailed study regarding the properties

of probability density function and hazard rate function is carried out. Some of the prop-

erties of the distribution including Renyi entropy are derived. Some results based on

order statistics are established. The new model is fitted to a real data set on the survival

times of injected guinea pigs and verified to be a better fit compared to the Fréchet, the

exponentiated Fréchet and beta Fréchet distributions by various statistical techniques.

Various applications of Marshall-Olkin extended Fréchet distribution are considered

in chapter 4. Reliability of a system following Marshall-Olkin Fréchet distribution under

stress-strength model is estimated and its validity is measured in terms of average bias

and average mean square error calculated from the simulated N estimates of R. The av-

erage length of the asymptotic 95% confidence intervals and coverage probability, for the

estimates obtained by simulation are evaluated. A reliability test plan is developed for

products with life time following the new distribution. Minimum sample size required is

determined to assure a minimum average life needed when the life test is terminated at a

pre assigned time t such that the observed number of failures does not exceed a given ac-

ceptance number c.The operating characteristic values and the minimum value of the ratio

of true average life to required average life for various sampling plans are tabulated. Four

different minification processes are developed for the model and some of its properties are

studied. Sample path properties are explored in all cases.

Chapter 5 discusses Marshall-Olkin Exponentiated Generalized Exponential Distribu-

tion and its Applications. Exponentiated generalized Exponential distribution and its prop-
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erties are considered. Marshall-Olkin Exponentiated generalized Exponential Distribution

and its properties are discussed. The quantiles and order statistics are considered. The

maximum likelihood estimates are obtained and applied to a real data set on carbon fibers.

Reliability of a system following Marshall-Olkin Exponentiated generalized Exponential dis-

tribution under stress-strength model is estimated and its validity is measured in terms of

average bias and average mean square error calculated from the simulated N estimates.

The average length of the asymptotic 95% confidence intervals and coverage probability

for the estimates obtained by simulation are evaluated.

Chapter 6 concentrates on Marshall-Olkin Exponentiated Generalized Fréchet Distri-

bution and its Applications. First we discuss the important properties of the Exponentiated

generalized Fréchet distribution. Marshall-Olkin Exponentiated generalized Fréchet Distri-

bution and its properties are discussed. We consider the quantiles and distribution of order

statistics. The maximum likelihood estimates are obtained and applied to a real data set to

compare the new distribution with Exponentiated generalized Fréchet distribution. Relia-

bility of a system following Marshall-Olkin Exponentiated Generalized Fréchet distribution

under stress-strength model is estimated. Its validity is examined using average bias and

average mean square error calculated from the simulated values. Simulation studies are

conducted to estimate the average length of the asymptotic 95% confidence intervals and

coverage probability.

Chapter 7 presents Exponentiated Marshall-Olkin Exponential and Weibull distribu-

tion. The generalization introduced by Jayakumar and Thomas (2008) is applied here.

Exponentiated Marshall-Olkin Exponential distribution and Exponentiated Marshall-Olkin

Weibull distribution are considered. Various properties are studied including quantiles,

order statistics, record values and Rényi entropy. Estimation of parameters is also consid-

ered. A real data set is analyzed as an application.

Chapter 8, introduces Negative Binomial Extreme Stable Marshall-Olkin Extended

Lindley Distribution and its Applications. We first consider the properties of Extended
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Lindley distribution. Negative binomial extreme stable Marshall-Olkin Extended Lindley

Distribution and its properties are discussed. The expression of quantiles and the distri-

bution of order statistics are derived. Record values associated with the new family is also

considered. The maximum likelihood estimates of the distribution is obtained by using R

programme and applied to a real data set on failure times of the air conditioning system of

an airplane.

In chapter 9, a new distribution namely Negative Binomial Extreme Stable Marshall-

Olkin Pareto distributionis introduced. The distributional properties are also considered.

A reliability test plan is developed for products with lifetime following the new distribution.

Minimum sample size required is determined to assure a minimum average life needed

when the life test is terminated at a pre assigned time t such that the observed number

of failures does not exceed a given acceptance number c. The operating characteristic

values and the minimum value of the ratio of true average life to required average life for

various sampling plans are tabulated.

Chapter 10 discusses Negative Binomial Marshall-Olkin Rayleigh Distribution and its

Applications. Quantiles and order statistics of the distribution are obtained. We also de-

velop the reliability test plan for the distribution. Minimum sample size required is deter-

mined to assure a minimum average life needed when the life test is terminated at a pre

assigned time t such that the observed number of failures does not exceed a given accep-

tance number c. The operating characteristic values and the minimum value of the ratio of

true average life to required average life for various sampling plans are tabulated.
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CHAPTER 2

On Marshall- Olkin Extended Exponential

Distribution and Applications

2.1 Introduction

Exponential distributions play a central role in analysis of lifetime or survival data, in part

because of their convenient statistical theory, their important lack of memory property and

their constant hazard rates. In circumstances where the one-parameter family of exponen-

tial distributions is not sufficiently broad, a number of wider families such as the gamma,

Weibull and Gompertz-Makeham distributions are in common use; these families and their

usefulness are described by various authors.( see Johnson et al 2004).

By various methods, new parameters can be introduced to expand families of dis-

tributions for added flexibility or to construct covariate models. Introduction of a scale

parameter leads to the accelerated life model, and taking powers of the survival function

introduces a parameter that leads to the proportional hazards model. For instance, the
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family of Weibull distributions contains the exponential distributions and is constructed by

taking powers of exponentially distributed random variables. The family of gamma distri-

butions also contains the exponential distributions, and is constructed by taking powers of

the Laplace transform.

In this chapter, we introduce the Marshall-Olkin Extended Exponential distribution

MOEE(α, λ) and its properties are studied. we discuss MOEE(α) distributions with spe-

cial emphasis on record value theory. We derive the entropy of record value distribution

and entropy is calculated for various record values. We also obtain an estimate of reli-

ability in the context of stress strength analysis and average bias,average mean square

error,average confidence interval and coverage probability for the estimate is tabulated

numerically for a simulated data .Finally we introduce first order stationary autoregressive

processes with exponential marginals and the sample path properties are explored.The

probability p is estimated and the standard error of the estimated value is calculated nu-

merically by simulation.

2.2 Marshall -Olkin Extended Exponential Distribution

When F (x) = e−σx, x ≥ 0 is the survival function of exponential distribution, then by(??)

we have the Marshall -Olkin Extended Exponential MOEE (α, σ)distribution with survival

function,

G(x) =
α

eσx − α
x ≥ 0, σ > 0, α > 0, α = 1− α (2.2.1)

Then the p.d.f. is

g(x) =
ασeσx

[eσx − α]2
x ≥ 0, σ > 0, α > 0, α = 1− α. (2.2.2)

Direct evaluation shows that,

E(X) = −α logα

σα
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The hazard rate is

h(x) =
σeσx

eσx − α
x ≥ 0, α > 0. (2.2.3)

The graph of h(x) is drawn in Figure 2.1. It can be seen that the hazard rate is DFR for

α < 1, and IFR for α > 1. Note that for α = 1 h(x)=1, showing constant failure rate. This

establishes the wide applicability of the MOEE distribution in reliability modeling.

Figure 2.1: Hazard rate function of MOEE (α, σ) for various values of α and σ

2.3 Record Value Theory for Marshall-Olkin Extended Exponential

Distribution

Chandler(1952)introduced the study of record values and documented many of the ba-

sic properties of records.Nagaraja(1988),Nevzorov(1988,2001),Arnold and Balakrishnan

(1989), Balakrishnan and Ahsanullah (1994), Ahsanullah (1995,1998), Sultan et al. (2003),

etc. have made significant contributions to the theory of records. Arnold et al. (1998) pro-

vide an excellent discussion on various results with respect to record values. Now we
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derive some record statistics with respect to Marshall-Olkin Extended Exponential distri-

bution with σ = 1 for which the p.d.f is

g(x) =
αex

(ex − α)2
, x > 0, α > 0, α = 1− α (2.3.1)

By (1.3.1) the density function of the nth record for MOEE(α) distribution is given by

gRn(x) =
αex

(n− 1)![ex − (1− α)]2

[
− ln

(
α

ex − (1− α)

)]n−1

, 0 < x <∞ (2.3.2)

Then the single moment of nth record statistic can be written as

βn =

∫ ∞
0

ln(α + αeu)
un−1

(n− 1)!
e−udu (2.3.3)

Theorem 2.3.1. The single moment of nth upper record value for α > 0.5 is given by

βn = ln(α) + n−
∞∑
i=1

ki

i(i+ 1)n
, where k = 1− 1

α
. (2.3.4)

and consequently, for n ≥ 2

βn = βn−1 +
∞∑
i=0

ki

(i+ 1)n
(2.3.5)

Proof From (2.3.3)and using the fact that ln[1− ke−u] = −
∞∑
i=1

kie−iu

i

βn = ln(α)

∫ ∞
0

un−1e−u

(n− 1)!
du+

∫ ∞
0

une−u

(n− 1)!
du−

∞∑
i=1

ki

i

∫ ∞
0

e−(i+1)uun−1

(n− 1)!
du

which on evaluation directly gives (2.3.4)
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Table 2.1: Mean of upper record values

n α =1 α =1.5 α=2 α =2.5 α=3 α =3.5 α =4
1 1 1.2164 1.3863 1.5272 1.6479 1.7539 1.8484
2 2 2.3150 2.5508 2.7398 2.8978 3.0337 3.1530
3 3 3.3615 3.6252 3.8331 4.0049 4.1513 4.2789
4 4 4.3839 4.6602 4.8762 5.0537 5.2043 5.3352
5 5 5.3948 5.677 5.8967 6.0767 6.2292 6.3615
6 6 6.4002 6.6852 6.9066 7.0879 7.2412 7.3741
7 7 7.4028 7.6892 7.9115 8.0933 8.2471 8.3803

Now

βn = ln(α) + n−
∞∑
i=1

ki

(i+ 1)n−1

[
1

i
− 1

i+ 1

]
simplifying we get the recurrence relation (2.3.5)

Using the result(2.3.4) the mean of record values from MOEE(α) for α = 1.0(0.5)4.0 are

evaluated and presented in table 2.1

Theorem 2.3.2. The second single moment of nth upper record value is

β2
n = ln(α)2 + n(n+ 1 + 2 ln(α))− 2n

∞∑
i=1

ki

i(i+ 1)n+1
− 2 ln(α)

×
∞∑
i=1

ki

i(i+ 1)n
+
∞∑
i=1

∞∑
j=1

ki+j

ij(i+ j + 1)n
(2.3.6)

Proof From (2.3.3) the 2nd single moment of nth record value is given by

β2
n =

∫ ∞
0

{
ln[αeu(1− ke−u)]

}2 un−1e−u

(n− 1)!
du, k = 1− 1

α

= (lnα)2 + n(n+ 1) + 2n lnα− 2n
∞∑
i=1

ki

i(i+ 1)(n+1)
− 2

× lnα
∞∑
i=1

ki

i(i+ 1)n
+
∞∑
i=1

∞∑
j=1

ki+j

ij

∫ ∞
0

e−(i+j+1)u un−1

(n− 1)!
du
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on simplification using the fact that (a1 + a2)2 =
2∑
i=1

2∑
j=1

aiaj we get (2.3.6).

By (1.3.2)the joint p.d.f. of mth and nth record values of MOEE (α) distribution is given by

gRm,Rn(x) =

α2

[
− ln

{
α

ex − (1− α)

}]m−1

(m− 1)!

1

[ex − (1− α)]
.

×

[
− ln

{
ex − (1− α)

ey − (1− α)

}]n−m−1

(n−m− 1)!

× ey

[ey − (1− α)]2
, 0 < x < y <∞

Theorem 2.3.3. For 1 ≤ m ≤ n the product moment

βm,n = (lnα)2 + lnα(m+ n) +m(n+ 1)− [lnα + (n−m)]

×
∞∑
i=1

ki

i(i+ 1)m
−m

∞∑
i=1

ki

i(i+ 1)m+1
− lnα

∞∑
i=1

kj

j(j + 1)n
−m

×
∞∑
j=1

kj

j(j + 1)n+1
+
∞∑
i=1

∞∑
j=1

k(i+j)

ij(j + 1)n−m(i+ j + 1)m
(2.3.7)

Proof:

βm,n =
α

(m− 1)!

∫ ∞
0

x

[
− ln

(
α

ex − α

)]m−1
ex

ex − α
Ix dx (2.3.8)

where

Ix =
1

(n−m− 1)!

∫ ∞
x

yey

(ey − α)2

[
− ln

(
ex − α
ey − α

)](n−m−1)

dy

now making use of the transformation u = − ln
(
ex−α
ey−α

)
and writing ln

[
1−

(
α−1
ex−α

)
e−u
]

= −
∑∞

i=1

(
α−1
ex−α

)i e−iu
i

we get

Ix =
1

(ex − α)

[
ln(ex − α) + (n−m)−

∞∑
i=1

(
α− 1

ex − α

)i
1

i(i+ 1)n−m

]

31



CHAPTER 2. ON MARSHALL- OLKIN EXTENDED EXPONENTIAL DISTRIBUTION AND APPLICATIONS

Table 2.2: Variance and covariance of upper record values

m n α = 1 α = 1.5 α = 2 α = 2.5 α = 3 α = 3.5 α = 4
1 1 1 1.2109 1.3681 1.4924 1.5946 1.6809 1.7551

2 1 1.1515 1.2563 1.3348 1.3965 1.4466 1.4885
3 1 1.1241 1.2075 1.2688 1.3164 1.3546 1.3863
4 1 1.111 1.1851 1.2393 1.2812 1.3148 1.3426
5 1 1.1047 1.1745 1.2256 1.265 1.2966 1.3228
6 1 1.1017 1.1694 1.219 1.2573 1.288 1.3135
7 1 1.1001 1.1669 1.2158 1.2535 1.2839 1.309

2 2 2 2.193 2.3164 2.4035 2.4689 2.52 2.5613
3 2 2.1411 2.2274 2.2865 2.3297 2.3629 2.3893
4 2 2.1164 2.1866 2.2341 2.2686 2.295 2.3158
5 2 2.1045 2.1672 2.2096 2.2404 2.2639 2.2824
6 2 2.0987 2.1579 2.1979 2.227 2.2492 2.2667
7 2 2.0958 2.1533 2.1922 2.2205 2.2421 2.2591

3 3 3 3.1371 3.217 3.2697 3.3074 3.3356 3.3577
4 3 3.1013 3.1587 3.196 3.2222 3.2418 3.2569
5 3 3.0839 3.1311 3.1616 3.1829 3.1988 3.211
6 3 3.0754 3.1178 3.1451 3.1642 3.1784 3.1894
7 3 3.0712 3.1113 3.1371 3.1552 3.1686 3.179

4 4 4 4.0884 4.137 4.1679 4.1894 4.2051 4.2172
5 4 4.0657 4.1012 4.1236 4.139 4.1503 4.1589
6 4 4.0545 4.0839 4.1024 4.115 4.1243 4.1314
7 4 4.0491 4.0755 4.092 4.1034 4.1117 4.1181

5 5 5 5.0541 5.0828 5.1007 5.1129 5.1217 5.1285
6 5 5.0403 5.0615 5.0747 5.0836 5.09 5.0949
7 5 5.0335 5.0511 5.062 5.0694 5.0747 5.0787

6 6 6 6.032 6.0487 6.0589 6.0658 6.0708 6.0745
7 6 6.0239 6.0363 6.0438 6.0489 6.0526 6.0554

7 7 7 7.0185 7.028 7.0338 7.0377 7.0405 7.0426

substituting the expression of Ix in (2.3.8) and using the transformation t = − ln
(

α
ex−α

)
yields (2.3.7). Using (2.3.4),(2.3.6)and (2.3.7)numerical values of variance and covariance

of upper record values are obtained by Matlab program for various values of α = 1(0.5)4

and is presented in table 2.2.

2.3.1 Estimation of the location and scale parameters

In industry experiments the number of measurements can be made lesser if the record

values are observed instead of complete sample for estimation of parameters.There are

also situations in which an observation is stored if it is a record value. This includes stud-

ies in meteorology,hydrology,seismology athletic events and mining.Recently much stud-
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ies have been made on parametric and non parametric inferences based on record val-

ues.sultan et al(2000),Raqab (2002) obtained inference for generalised exponential dis-

tribution based on record statistics.Soliman et al(2006) made a comparative study on

Bayesian and non-Bayesian estimates using record statistics from Weibull model.Sultan

et al(2008) obtained the estimation from record values and predicted future records for

gamma distribution.Sultan(2010) discussed different methods of estimation based on record

values from inverse Weibull distribution.

Consider the general location-scale family of distributions with cdf F (x, µ, σ) = F (x−µ
σ

)

and pdf f(x, µ, σ) = 1
σ
f(x−µ

σ
) and assume that the upper record values R1, R2, ....Rn

are available. Then BLUE’s of µ and σ are given respectively by,(see Balakrishnan and

Cochen,1991)

µ∗ =
βTΣ−1β1TΣ−1 − βTΣ−11βTΣ−1

(βTΣ−1β)(1TΣ−11)− (βTΣ−11)2
R =

n∑
i=1

aiRi (2.3.9)

σ∗ =
1TΣ−11βTΣ−1 − 1TΣ−1β1TΣ−1

(βTΣ−1β)(1TΣ−11)− (βTΣ−11)2
R =

n∑
i=1

biRi (2.3.10)

where β denotes the column vector of the expected values of observed upper record val-

ues from the distribution F(x),Σ denotes the variance-covariance matrix of the record val-

ues from the distribution F(x),and 1 is a column vector of dimension n with all its entries as

1.

The three parameter Marshall-Olkin extended exponential distribution has the probability

density function given by

g(y) =
αe

(y−µ)
σ

σ(e(
(y−µ)
σ

) − α)2
, y > µ, α, σ > 0,

where α, µ and σ are the shape,location and scale parameters respectively.Let x = y−µ
σ

.

Then X has one parameter MOEE density function as given in(2.3.1).

By making use of means, variances and covariances presented in Table 2.1 and 2.2 we
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calculate the coefficients of BLUEs ai and bi ,i=1,2,...n for different values of shape param-

eter α and n and presented in Table 2.3 and Table 2.4. It can be noted from these tables

that
n∑
i=1

ai = 1 and
n∑
i=1

bi = 0

The variances and covariance of the BLUE’s of µ and σ are given by(see Balakrishnan

and Cochen,1991)

V ar(µ∗) = σ2

{
βTΣ−1β

(βTΣ−1β)(1TΣ−11)− (βTΣ−11)2

}
= σ2V1

V ar(σ∗) = σ2

{
1TΣ−11

(βTΣ−1β)(1TΣ−11)− (βTΣ−11)2

}
= σ2V2

Cov(µ∗, σ∗) = σ2

{
−βTΣ−11

(βTΣ−1β)(1TΣ−11)− (βTΣ−11)2

}
= σ2V3

Using these results Variance and covariances of the BLUE’s of µ and σ can be obtained

in terms of σ2 and is presented in Table 2.5

Example:Consider a simulated data of failure times which follow MOEE distribution

with α = 1.5,

9.9936,9.0684,10.0644,13.3159,9.6027,13.93718,8.3373,8.8017,9.9252,10.6296.

The observed upper record values are then,

9.9936,10.0644,13.3159,13.93718.

With n=4, α = 1.5,the BLUE’s of µ andσ cab be computed using(2.3.9),(2.3.10)and Tables

2.3 and 2.4.The estimates are

µ∗ = 8.5542 and σ∗ = 1.248

The corresponding variances and covariance of µ∗ and σ∗ can be obtained from Table 2.5.

V ar(µ∗) = 1.7046, V ar(σ∗) = 0.3067 and Cov(µ∗σ∗) = −0.4047
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Table 2.3: Coefficients of the BLUE of µ

n α = 1 α = 1.5 α = 2 α = 2.5 α = 3 α = 3.5 α = 4

2 2.0000 2.1072 2.1905 2.2594 2.3184 2.3704 2.4168
-1.0000 -1.1072 -1.1905 -1.2594 -1.3184 -1.3704 -1.4168

3 1.5000 1.5533 1.5943 1.6281 1.6568 1.6819 1.7043
0.0000 0.0282 0.0518 0.0721 0.0901 0.1066 0.1212
-0.5000 -0.5815 -0.6461 -0.7002 -0.7469 -0.7885 -0.8256

4 1.3333 1.3628 1.3852 1.4037 1.4194 1.4330 1.4454
0.0000 0.0279 0.0509 0.0704 0.0875 0.1030 0.1166
0.0000 0.0093 0.0172 0.0239 0.0294 0.0344 0.0388
-0.3333 -0.4000 -0.4533 -0.4979 -0.5363 -0.5705 -0.6008

5 1.2500 1.2647 1.2758 1.2851 1.2929 1.2998 1.3061
0.0000 0.0278 0.0503 0.0693 0.0859 0.1008 0.1138
0.0000 0.0104 0.0191 0.0264 0.0323 0.0377 0.0423
0.0000 0.0035 0.0061 0.0084 0.0102 0.0117 0.0131
-0.2500 -0.3064 -0.3514 -0.3891 -0.4214 -0.4500 -0.4754

6 1.2000 1.1705 1.2077 1.2106 1.2130 1.2153 1.2176
0.0000 0.0577 0.0500 0.0686 0.0849 0.0993 0.1119
0.0000 0.0245 0.0202 0.0278 0.0341 0.0396 0.0444
0.0000 0.0096 0.0073 0.0100 0.0121 0.0139 0.0155
0.0000 0.0035 0.0023 0.0030 0.0037 0.0041 0.0045
-0.2000 -0.2657 -0.2875 -0.3199 -0.3478 -0.3722 -0.3940

7 1.1667 1.1635 1.1609 1.1590 1.1576 1.1564 1.1558
0.0000 0.0276 0.0497 0.0681 0.0841 0.0982 0.1105
0.0000 0.0115 0.0210 0.0288 0.0353 0.0409 0.0459
0.0000 0.0047 0.0081 0.0110 0.0133 0.0153 0.0171
0.0000 0.0018 0.0029 0.0038 0.0047 0.0052 0.0057
0.0000 0.0003 0.0009 0.0012 0.0012 0.0016 0.0016
-0.1667 -0.2094 -0.2435 -0.2719 -0.2961 -0.3176 -0.3365
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Table 2.4: Coefficients for the BLUE of σ

n α = 1 α = 1.5 α = 2 α = 2.5 α = 3 α = 3.5 α = 4

2 -1.0000 -0.9102 -0.8587 -0.8247 -0.8001 -0.7814 -0.7665
1.0000 0.9102 0.8587 0.8247 0.8001 0.7814 0.7665

3 -0.5000 -0.4658 -0.4455 -0.4318 -0.4217 -0.4138 -0.4075
0.0000 -0.0008 -0.0023 -0.0039 -0.0055 -0.0071 -0.0085
0.5000 0.4666 0.4478 0.4357 0.4272 0.4209 0.4160

4 -0.3333 -0.3164 -0.3059 -0.2986 -0.2930 -0.2885 -0.2848
0.0000 -0.0006 -0.0017 -0.0029 -0.0041 -0.0053 -0.0063
0.0000 0.0034 0.0050 0.0058 0.0063 0.0064 0.0065
0.3333 0.3136 0.3026 0.2957 0.2908 0.2873 0.2846

5 -0.2500 -0.2409 -0.2348 -0.2304 -0.2269 -0.2239 -0.2215
0.0000 -0.0005 -0.0013 -0.0023 -0.0033 -0.0042 -0.0051
0.0000 0.0026 0.0038 0.0044 0.0047 0.0049 0.0050
0.0000 0.0026 0.0039 0.0047 0.0051 0.0054 0.0056
0.2500 0.2361 0.2284 0.2236 0.2203 0.2179 0.2160

6 -0.2000 -0.1890 -0.1913 -0.1884 -0.1860 -0.1840 -0.1823
0.0000 -0.0067 -0.0011 -0.0019 -0.0027 -0.0035 -0.0042
0.0000 0.0004 0.0030 0.0036 0.0038 0.0040 0.0040
0.0000 0.0020 0.0032 0.0038 0.0042 0.0044 0.0045
0.0000 0.0018 0.0024 0.0028 0.0030 0.0033 0.0034
0.2000 0.1915 0.1838 0.1802 0.1777 0.1759 0.1746

7 -0.1667 -0.1640 -0.1617 -0.1598 -0.1581 -0.1566 -0.1553
0.0000 -0.0003 -0.0009 -0.0016 -0.0023 -0.0030 -0.0036
0.0000 0.0018 0.0026 0.0030 0.0032 0.0034 0.0034
0.0000 0.0018 0.0027 0.0032 0.0035 0.0037 0.0039
0.0000 0.0013 0.0020 0.0024 0.0026 0.0027 0.0029
0.0000 0.0009 0.0013 0.0015 0.0017 0.0018 0.0018
0.1667 0.1585 0.1541 0.1513 0.1493 0.1480 0.1470
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Table 2.5: Variance and covariances of the BLUE’s of µ and σ in terms of σ2

n α = 1 α = 1.5 α = 2 α = 2.5 α = 3 α = 3.5 α = 4

2 2.0000 2.6921 3.2951 3.8345 4.3254 4.7791 5.1993
1.0000 0.9122 0.8642 0.8340 0.8133 0.7984 0.7870
-1.0000 -1.1636 -1.2940 -1.4036 -1.4986 -1.5834 -1.6590

3 1.5000 1.9841 2.3974 2.7612 3.0878 3.3860 3.6600
0.5000 0.4563 0.4329 0.4184 0.4084 0.4014 0.3961
-0.5000 -0.5955 -0.6718 -0.7357 -0.7908 -0.8397 -0.8833

4 1.3333 1.7406 2.0823 2.3792 2.6430 2.8817 3.0995
0.3333 0.3067 0.2925 0.2837 0.2777 0.2735 0.2703
-0.3333 -0.4047 -0.4614 -0.5089 -0.5497 -0.5857 -0.6178

5 1.2500 1.6153 1.9174 2.1770 2.4059 2.6113 2.7977
0.2500 0.2323 0.2228 0.2169 0.2129 0.2101 0.2080
-0.2500 -0.3081 -0.3542 -0.3927 -0.4258 -0.4548 -0.4807

6 1.2000 1.5382 1.8147 2.0501 2.2560 2.4391 2.6057
0.2000 0.1875 0.1808 0.1766 0.1738 0.1716 0.1703
-0.2000 -0.2493 -0.2886 -0.3212 -0.3492 -0.3734 -0.3956

7 1.1667 1.4859 1.7441 1.9622 2.1520 2.3203 2.4716
0.1667 0.1575 0.1525 0.1494 0.1473 0.1458 0.1447
-0.1667 -0.2097 -0.2439 -0.2723 -0.2967 -0.3181 -0.3370
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2.4 Confidence interval

Through the pivotal quantities

R1 =
µ∗ − µ
σ
√
V1

, R2 =
σ∗ − σ
σ
√
V2

and R3 =
µ∗ − µ
σ∗
√
V1

where µ∗ and σ∗ are the BLUE’s of µ and σ we construct confidence interval for the location

and scale parameters . We use R1 and R3 to construct CIs for µ when σ is known and

when σ is unknown respectively while R3 is used to construct CI’s for σ. The construction

of CI’s require the percentage points of R1, R2 and R3 which is obtained by using the

BLUE’s µ∗ and σ∗ via Monte carlo simulation based on 10000 runs and are presented in

Table 2.6,2.7 and 2.8 respectively.

2.5 Application

Now we apply the inference procedure discussed in the previous section to upper records

of simulated data sets of size n=3,4,5,6 and 7(withµ = 0, σ = 1 and α = 1.5).The BLUE’s

are calculated using tables 2.3 and 2.4 and is presented in table 2.9 Using the BLUE’s

given in table 2.9 and the percentage points of R1 and R3 we construct 95% confidence

interval for µ when σ known and σ unknown respectively through the formulae,

P (µ∗ − σ
√
V1R1(97.5) ≤ µ ≤ µ∗ − σ

√
V1R1(2.5)) = 95%

P (µ∗ − σ∗
√
V1R3(97.5) ≤ µ ≤ µ∗ − σ∗

√
V1R3(2.5)) = 95%

We also construct confidence interval for σ using percentage points of R2 through the

formula

P (
σ∗

1 +
√
V2R2(97.5)

≤ σ ≤ σ∗

1 +
√
V2R2(2.5)

) = 95%

The result is presented in table 2.10
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Table 2.6: Simulated percentage points of R1

α n 0.5% 2.5% 5% 95% 97.5% 99.5%

1 3 -2.8296 -2.1592 -1.859 1.5535 1.8638 2.4919
4 -2.036 -1.5646 -1.3589 1.1329 1.4127 1.9046
5 -1.6618 -1.2495 -1.0814 0.8481 1.0886 1.5583
6 -1.3162 -1.0171 -0.8835 0.633 0.8488 1.2872
7 -1.1594 -0.8969 -0.7726 0.5081 0.6791 1.0577

1.5 3 -2.7469 -2.1267 -1.8256 1.3433 1.6125 2.0987
4 -2.0792 -1.568 -1.3435 0.9755 1.2015 1.6767
5 -1.7621 -1.3661 -1.1965 0.9028 1.1398 1.6211
6 -1.5433 -1.2122 -1.0447 0.6522 0.8659 1.2275
7 -1.2433 -0.9933 -0.8666 0.5839 0.7746 1.1191

2 3 -2.9372 -2.2804 -1.9577 1.5304 1.7727 2.2355
4 -2.1547 -1.6662 -1.4463 1.001 1.2494 1.6742
5 -1.8518 -1.413 -1.2268 0.9311 1.1606 1.5419
6 -1.6084 -1.2163 -1.0591 0.7614 0.9621 1.3124
7 -1.386 -1.0601 -0.9331 0.6092 0.7899 1.1412

2.5 3 -3.0444 -2.2943 -1.978 1.5021 1.7637 2.2164
4 -2.18 -1.6771 -1.4607 1.0432 1.262 1.7578
5 -1.9563 -1.5005 -1.3072 0.9578 1.1741 1.5659
6 -1.659 -1.2994 -1.127 0.773 0.9675 1.3537
7 -1.4385 -1.1016 -0.9666 0.6717 0.8683 1.2118

3 3 -3.0072 -2.3132 -2.0032 1.5444 1.7876 2.2442
4 -2.329 -1.7043 -1.4957 1.0514 1.2699 1.7056
5 -1.9276 -1.5085 -1.3244 0.9799 1.2236 1.6289
6 -1.6967 -1.3407 -1.1601 0.8103 1.0023 1.3681
7 -1.5773 -1.1836 -1.0341 0.6741 0.8618 1.1855

3.5 3 -2.981 -2.3629 -2.0257 1.491 1.7473 2.1886
4 -2.4141 -1.7946 -1.5459 1.0794 1.2766 1.6736
5 -2.0119 -1.5752 -1.3675 1.0136 1.2454 1.6709
6 -1.7613 -1.3636 -1.1757 0.8331 1.0474 1.4157
7 -1.5573 -1.1891 -1.0476 0.6974 0.8853 1.2349

4 3 -3.1703 -2.4131 -2.0758 1.4774 1.7188 2.1222
4 -2.4117 -1.8432 -1.587 1.0576 1.2802 1.6664
5 -2.0393 -1.6271 -1.4089 0.9825 1.1939 1.6094
6 -1.779 -1.3837 -1.2174 0.8429 1.0452 1.4303
7 -1.5883 -1.2268 -1.081 0.7254 0.9267 1.2924
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Table 2.7: Simulated percentage points of R2

α n 0.5% 2.5% 5% 95% 97.5% 99.5%

1 3 -1.2506 -1.0026 -0.8327 2.453 2.9989 4.0999
4 -1.3996 -1.1541 -0.9928 1.5656 1.9704 3.0443
5 -1.541 -1.3188 -1.1942 0.9047 1.3226 2.1704
6 -1.733 -1.556 -1.4405 0.403 0.7204 1.4378
7 -1.916 -1.7497 -1.6572 0.0506 0.3645 1.0337

1.5 3 -1.3247 -1.0896 -0.9345 2.2299 2.7888 3.8331
4 -1.4715 -1.2285 -1.0846 1.3654 1.7744 2.714
5 -1.6068 -1.3679 -1.2072 0.9354 1.2378 2.0441
6 -1.7535 -1.5495 -1.4251 0.462 0.752 1.3985
7 -1.9489 -1.7676 -1.6626 0.0409 0.3244 0.936

2 3 -1.3364 -1.0862 -0.9049 2.4359 2.9387 4.0115
4 -1.5098 -1.2669 -1.1093 1.4517 1.8383 2.8977
5 -1.6471 -1.4 -1.258 0.9388 1.2818 2.0531
6 -1.8033 -1.5679 -1.4521 0.4505 0.777 1.4362
7 -1.9476 -1.7578 -1.6385 0.0444 0.3369 1.005

2.5 3 -1.3546 -1.1203 -0.9356 2.4171 2.9537 4.1176
4 -1.5525 -1.3032 -1.1375 1.4003 1.7763 2.6919
5 -1.6252 -1.391 -1.2378 1.0057 1.3852 2.133
6 -1.7704 -1.5579 -1.4247 0.5361 0.8411 1.4941
7 -1.9689 -1.7756 -1.6575 0.0504 0.3189 0.9403

3 3 -1.378 -1.1623 -0.9745 2.4274 2.8905 3.8861
4 -1.5728 -1.3023 -1.1544 1.3693 1.7548 2.6961
5 -1.6821 -1.4096 -1.252 0.992 1.3542 2.1185
6 -1.8553 -1.5797 -1.4424 0.545 0.8509 1.6086
7 -1.9962 -1.7909 -1.6659 0.1346 0.414 1.073

3.5 3 -1.3688 -1.1422 -0.9844 2.4497 2.8813 3.9018
4 -1.5727 -1.3152 -1.1552 1.4768 1.8687 2.8386
5 -1.7154 -1.4377 -1.2764 1.0217 1.3664 2.1111
6 -1.8318 -1.582 -1.4572 0.5079 0.7956 1.4977
7 -1.9918 -1.7892 -1.6604 0.1175 0.351 1.0937

4 3 -1.4079 -1.161 -0.9921 2.4939 3.0147 4.0791
4 -1.5692 -1.324 -1.1664 1.5152 1.929 2.8365
5 -1.6899 -1.425 -1.2633 1.0731 1.419 2.2244
6 -1.8259 -1.6027 -1.4583 0.5409 0.8475 1.563
7 -2.0118 -1.7927 -1.6489 0.123 0.3674 1.1029
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Table 2.8: Simulated percentage points of R3

α n 0.5% 2.5% 5% 95% 97.5% 99.5%

1 3 -0.8123 -0.7976 -0.7773 3.5099 5.6257 13.8717
4 -0.862 -0.8467 -0.8305 2.3892 3.7085 7.6077
5 -0.8905 -0.8765 -0.8607 1.8005 2.6284 5.4698
6 -0.9099 -0.8971 -0.8786 1.48 2.2923 4.6491
7 -0.9223 -0.9082 -0.8926 1.2328 1.9345 3.333

1.5 3 -0.8669 -0.8456 -0.824 3.3486 5.3569 15.1194
4 -0.9356 -0.9088 -0.8861 2.1219 3.322 6.8758
5 -0.9802 -0.9511 -0.9266 1.9252 2.8344 5.6475
6 -1.0571 -1.0233 -0.9952 1.4929 2.2312 4.4454
7 -1.0372 -1.0067 -0.9804 1.4816 2.1252 4.3192

2 3 -0.9028 -0.871 -0.8416 3.4915 5.707 15.7507
4 -0.9896 -0.9512 -0.9185 2.2748 3.4567 7.6392
5 -1.055 -1.0167 -0.9836 2.0403 3.1359 6.038
6 -1.0869 -1.045 -1.0122 1.7601 2.4463 4.8687
7 -1.1222 -1.0739 -1.0371 1.496 2.1448 3.9157

2.5 3 -0.9316 -0.8871 -0.8563 3.6244 5.9548 14.2394
4 -1.0217 -0.9752 -0.9431 2.413 3.6608 8.2219
5 -1.094 -1.0416 -1.0061 1.9683 3.0045 5.654
6 -1.1401 -1.0858 -1.0497 1.7171 2.5237 4.6132
7 -1.1781 -1.1216 -1.0852 1.6862 2.3604 4.3077

3 3 -0.9487 -0.9064 -0.8723 3.8848 6.262 15.3208
4 -1.0566 -1.0007 -0.9592 2.4537 3.635 8.088
5 -1.1243 -1.0571 -1.0118 2.1611 3.1078 6.6269
6 -1.1807 -1.12 -1.0732 1.8243 2.6557 5.2907
7 -1.2323 -1.1633 -1.113 1.7411 2.3974 4.338

3.5 3 -0.9694 -0.9157 -0.8802 3.6677 5.5475 14.706
4 -1.0751 -1.0194 -0.9791 2.4833 3.7404 8.2108
5 -1.1445 -1.0823 -1.0383 2.2466 3.3349 6.8823
6 -1.2051 -1.1371 -1.0861 1.9678 2.7908 5.4339
7 -1.2535 -1.1855 -1.137 1.6821 2.456 4.6229

4 3 -0.9834 -0.9309 -0.892 3.7529 5.8408 16.5728
4 -1.0987 -1.0433 -0.9977 2.5156 3.7436 7.5572
5 -1.1785 -1.1083 -1.054 2.1927 3.141 6.1287
6 -1.239 -1.1618 -1.1072 1.9349 2.8582 5.1429
7 -1.2884 -1.2083 -1.153 1.8191 2.5726 4.8888
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Table 2.9: Upper Record values, BLUE’s of µ and σ forα = 1.5

n Upper record values µ∗ σ∗

3 1.2940,2.5177,3.4619 0.0679 1.0106
4 0.9959,1.2717,2.1923,3.4995 0.0133 0.789
5 1.1460,1.2020,2.9643,3.4555,4.9878 -0.0026 0.9176
6 1.1584,1.7404,2.2788,2.3974,2.6612,5.8204 -0.0019 0.8945
7 0.8786,2.8224,3.1445,3.4072,3.8070,3.8294,5.5368 0.001 0.9528

Table 2.10: 95% Confidence interval for µ and σ

n 3 4 5 6 7

95%CI forµ (-2.2035,3.0636) (-1.5718,2.082) (-1.4505,1.7336) (-1.0756,1.5012) (-0.9432,1.2191)
(σ known)
95%CI forµ (-7.5538,1.2710) (-3.4445,0.9593) (-3.3021,1.1046) (-2.4765,1.1330) (-2.4674,1.1703)
(σ unknown)
95%CI forσ (0.3489,3.9019) (0.398,2.4687) (0.5747,2.6925) (0.6747,2.7188) (0.844,3.18)

2.6 Prediction for future records

Prediction of future records becomes a problem of great interest. For example,while study-

ing the record rainfall or snowfall,having observed the record values until the present time,

we will be naturally interested in predicting the amount of rainfall or snowfall to be expected

when the present record is broken for the first time in future.The best linear unbiased pre-

dicted value of the next record can be written as (see Balakrishnan and Chan,1998)

yu(n) = µ∗ + σ∗βn

where µ∗ andσ∗ are the BLUE’s based on the first (n-1) records and βn is the nth moment

of record values.Prediction of next upper record value is obtained from a simulated data

and presented in Table 2.11.
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Table 2.11: Predicted records

n simulated records of size (n-1) Predicted value
3 3.5612,4.6331 5.6538
4 0.2391,2.1381,3.23 4.664
5 0.3232,1.1896,1.6908,3.068 3.93
6 0.1088,0.5235,1.2031,1.2407,3.239 3.942
7 1.1068,1.6784,1.9831,3.3077,3.4781,3.5190 3.5387
8 1.6361,2.4535,3.1141,3.2858,3.6631,3.7992,4.2374 4.2723

2.7 Entropy of Record value distribution

Entropy provides an excellent tool to quantify the amount of information (or uncertainty)

contained in a random observation regarding its parent distribution. Shannon’s(1948) en-

tropy of an absolutely continuous random variable X with probability density function f(x) is

given by

Hx[f(x)] = −
∫ ∞
−∞

f(x)ln[f(x)]dx

The entropy is always non-negative in the case of a discrete random variable X and is

also invariant under a one-to- one transformation of X. For a continuous random vari-

able, entropy is not invariant under a one-to-one transformation of X and it takes values

in (−∞,+∞) .The entropy for some commonly used probability distributions have been

tabulated by many authors. More recently Ebrahmi(2000) have explored the properties of

entropy,Kullback - Leibler information and mutual information for order statistics. Now we

discuss the entropy for the record values of MOEE (α, σ). LetH(Rn) be the entropy of the

nth record value. Then by Shakil (2005)

H(Rn) = ln(Γn)− (n− 1)ψ(n)− 1

Γ(n)

∫ ∞
−∞

[− ln(1−G(x))]n−1g(x) ln(g(x))dx (2.7.1)

where
∫∞

0
tj−1e−tdt = Γ(j) and

∫∞
0
tj−1e−tln(t)dt = Γ(j)ψ(j) ψ(j) is the digamma

function. For n = 1 entropy of the first record value is same as the entropy of parent

distribution .Comparison of the entropy of parent distribution and nthrecord value

n ≥ 2 is same as comparison of entropy of first record value with entropy of a given nth
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Table 2.12: Entropy of MOEE (α, σ)

Record σ = 0.5 σ = 1 σ = 2 σ = 5
2 2.2113 1.5182 0.8250 -0.0913
4 2.0090 2.7021 1.3159 0.3996
6 2.2545 2.9476 1.5613 0.6450
8 2.4167 3.1098 1.7235 0.8073
10 2.5384 3.2315 1.8452 0.9289

record value .Since the first observation from the parent distribution is always considered

as a record value, entropy of the first non-trivial record value is obtained when n ≥ 2.

Theorem 2.7.1. For MOEE (α, σ) distribution if H(j) represents the entropy corre-

sponding to jth record,then

H(j) = ln(Γj)− (j − 1)ψ(j) + j − ln(σ) +
∞∑
i=1

ki

i(i+ 1)j
(2.7.2)

Proof By (2.7.1)the entropy of jth record for MOEE (α, σ) is

H(j) = ln(Γj)− (j − 1)ψ(j)− 1

Γ(j)

∫ ∞
0

[
− ln

(
α

eσx − α

)]j−1

v(x) ln v(x) dx

where v(x) = ασeσx

(eσx−α)2
. By the transformation t = − ln α

eσx−α and writing

ln(1− ke−t) = −
∑∞

i=1
kie−it

i
where k = 1− 1

α
the result(2.3.8) can be easily obtained.

Using (2.7.2) the entropy of MOEE (α, σ) for α = 0.8 and for various record values and

various values of σ are tabulated and presented in table (2.12).

It is evident that the sequence {Hj} of entropies for record values is monotone increasing

in j .
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Figure 2.2: Graph of entropy of the jth record value, when α = 0.8 and for various values of
σ =0.5(solid),1(slash),2(dot)and 5(slash dot) respectively.

2.8 Stress-Strength Analysis and Estimation of Reliability

Stress-strength analysis is an area in reliability theory where we assess the impact of

stress on strength of devices and systems.It is measured by the expression R = P (Y >

X) which gives the reliability of a component in terms of the probability that the random

variable X representing stress experienced by the component exceeds Y, representing the

strength of the component. If stress exceeds strength, the component would fail,and vice

versa. Kotz et al (2003) gives a detailed description of stress-strength theory. For more

details one can see Nadarajah (2004),Kundu and Raqab (2009),and Bindu (2011)etc.

Gupta et al (2010) showed that for two independent random variables represent strength (X)

and stress (Y) follow the same Marshall-Olkin extended distributions with tilt parameters

α1 and α2 then the Reliability of the system given by P (X > Y ) denoted by R is

R =
α1

α2

(α1

α2
− 1)2

[
− ln

α1

α2

+
α1

α2

− 1

]

To estimate R it is enough if we estimate α1, α2 by the method of m.l.e.The log likelihood

equation here is

LL ∝ m ln(α1) + n log(α2)− 2
m∑
i=1

log(eσxi − (1− α1))− 2
n∑
i=1

log(eσyi − (1− α2))
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Then the mle of α1 and α2 are the solutions of the non-linear equations

∂LL

∂α1

=
m

α1

− 2
m∑
i=1

1

(eσxi − (1− α1))

∂LL

∂α2

=
n

α2

− 2
m∑
i=1

1

(eσyi − (1− α2))

By the property of m.l.e for m→∞, n→∞

√
m(α̂1 − α1),

√
n(α̂2 − α2)

d→ N2(0, diag{ 1
a11
, 1
a22
}

where a11 = lim
m,n→∞

1

m
I11 =

1

3α2
1

and a22 = lim
m,n→∞

1

n
I22 =

1

3α2
2

Now the information matrix has the elements

I11 = −E
(
∂2LL

∂α2
1

)
= −E

(
−m
α2

1

+ 2
m∑
i=1

1

(eσxi − (1− α1))2

)

=
m

α2
1

− 2α1m

∫ ∞
α

dt

t4

=
m

3α2
1

similarly I22 = −E
(
∂2LL
∂α2

1

)
= − n

3α2
2

and I12 = I21 = −E
(
∂2LL
∂α1α2

)
= 0

Now from Gupta et al(2009)the 95%confidence interval for R is given by

R̂∓ 1.96 α̂1b1(α̂1, α̂2)
√

3
m

+ 3
n

,

where b1(α1, α2) = ∂R
∂α1

= α2

(α1−α2)3

[
−2(α1 − α2) + (α1 + α2) ln α1

α2

]
and

b2(α1, α2) = ∂R
∂α2

= α1

(α1−α2)3

[
2(α1 − α2)− (α1 + α2) ln α1

α2

]
= −α1

α2
b1(α1, α2)
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2.8.1 Simulation Study

We generate N=10,000 sets of X-samples and Y-samples from the Marshall-Olkin ex-

tended exponential distribution with parameters α1, σ and α2, σ respectively.The combi-

nations of samples of sizes m = 20, 25, 30 and n = 20, 25, 30 along with

m = 40, n = 40 are considered.The validity of the estimate of R is discussed by the mea-

sures namely average bias of the estimate (b),average mean square error of the estimate

(AMSE),average confidence interval of the estimate and coverage probability.

The numerical values obtained for the measures listed above are presented in tables 2.13-

2.16.For α1 < α2 the average bias is positive and for α1 > α2 the average bias is negative

but in both cases the average bias decreases as the sample size increases.The average

MSE is almost symmetric with respect to (α1, α2). This symmetric property can also be

observed in the case of average confidence interval and its performance is quite good.The

coverage probability is very close to 0.95 and approaches to the nominal value as the

sample size increases. The simulation study indicates that the average bias, average

MSE, average confidence interval and coverage probability do not show much variability

for various parameter combinations.

2.9 Applications in Autoregressive Time Series Modelling

One of the simplest and widely used time series models is the autoregressive models and

it is well known that autoregressive process of appropriate orders is extensively used for

modeling time series data. The pth order autoregressive model is defined by

Xn = a1Xn−1 + a2Xn−2 + · · ·+ apXn−p + εn

where {εn} is a sequence of independent and identically distributed random variables

and a1, a2, ...an are autoregressive parameters. In particular the first order autoregressive

model is

Xn = a1Xn−1 + εn, n = 1, 2, ..., |a1| < 1
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Table 2.13: Average bias and average MSE of the simulated estimates of R for σ = 0.5

(α1, α2)

Average bias (b) Average Mean Square Error AMSE

(m,n) (0.5,0.8) (0.8,1.5) (0.8,0.5) (1.5,0.8) (0.5,0.8) (0.8,1.5) (0.8,0.5) (1.5,0.8)

(20,20) 0.0433 0.0586 -0.0432 -0.0582 0.0063 0.0065 0.0063 0.0064
(20,25) 0.0432 0.0578 -0.0455 -0.0582 0.0061 0.0061 0.0062 0.0061
(20,30) 0.0424 0.0574 -0.0481 -0.0599 0.0057 0.0059 0.0062 0.0060

(25,20) 0.0455 0.0593 -0.0423 -0.0579 0.0062 0.0063 0.0060 0.0061
(25,25) 0.0451 0.0584 -0.0468 -0.0585 0.0058 0.0058 0.0059 0.0060
(25,30) 0.0438 0.0576 -0.0478 -0.0593 0.0055 0.0057 0.0056 0.0058

(30,20) 0.0475 0.0596 -0.0430 -0.0573 0.0061 0.0060 0.0057 0.0059
(30,25) 0.0473 0.0587 -0.0450 -0.0585 0.0056 0.0058 0.0056 0.0058
(30,30) 0.0463 0.0580 -0.0465 -0.0596 0.0054 0.0056 0.0053 0.0056

(40,40) 0.0458 0.0575 -0.0468 -0.0597 0.0048 0.0052 0.0048 0.0052

Table 2.14: Average confidence length and coverage probability of the simulated 95%
confidence intervals of R for σ = 0.5

(α1, α2)
Average confidence length coverage probability

( m,n) (0.5,0.8) (0.8,1.5) (0.8,0.5) (1.5,0.8) (0.5,0.8) (0.8,1.5) (0.8,0.5) (1.5,0.8)

(20,20) 0.3506 0.3516 0.3508 0.3516 0.9748 0.9763 0.9793 0.9740
(20,30) 0.3327 0.3336 0.3432 0.3432 0.9780 0.9719 0.9696 0.9685
(20,25) 0.3207 0.3209 0.3216 0.3223 0.9805 0.9716 0.9672 0.9624

(25,20) 0.3335 0.3344 0.3329 0.3337 0.9706 0.9693 0.9788 0.9726
(25,25) 0.3146 0.3152 0.3145 0.3154 0.9739 0.9620 0.9742 0.9618
(25,30) 0.3010 0.3019 0.3017 0.3023 0.9787 0.9572 0.9699 0.9545

(30,20) 0.3199 0.3222 0.3204 0.3211 0.9700 0.9600 0.9782 0.9718
(30,25) 0.3017 0.3023 0.3015 0.3019 0.9655 0.9537 0.9738 0.9582
(30,30) 0.2880 0.2883 0.2879 0.2883 0.9738 0.9469 0.9763 0.9468

(40,40) 0.2500 0.2502 0.2499 0.2502 0.9664 0.9108 0.9676 0.9164
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Table 2.15: Average bias and average MSE of the simulated estimates of R for σ = 3

(α1, α2)

Average bias (b) Average Mean Square Error AMSE

(m,n) (0.5,0.8) (0.8,1.5) (0.8,0.5) (1.5,0.8) (0.5,0.8) (0.8,1.5) (0.8,0.5) (1.5,0.8)

(20,20) 0.0433 0.0586 -0.0432 -0.0582 0.0063 0.0065 0.0063 0.0064
(20,25) 0.0432 0.0578 -0.0455 -0.0582 0.0061 0.0061 0.0062 0.0061
(20,30) 0.0424 0.0574 -0.0481 -0.0599 0.0057 0.0059 0.0062 0.0060

(25,20) 0.0455 0.0593 -0.0423 -0.0579 0.0062 0.0063 0.0060 0.0061
(25,25) 0.0451 0.0584 -0.0468 -0.0585 0.0058 0.0058 0.0059 0.0060
(25,30) 0.0438 0.0576 -0.0478 -0.0593 0.0055 0.0057 0.0056 0.0058

(30,20) 0.0475 0.0596 -0.0430 -0.0573 0.0061 0.0060 0.0057 0.0059
(30,25) 0.0473 0.0587 -0.0450 -0.0585 0.0056 0.0058 0.0056 0.0058
(30,30) 0.0463 0.0580 -0.0465 -0.0596 0.0054 0.0056 0.0053 0.0056

(40,40) 0.0458 0.0575 -0.0468 -0.0597 0.0048 0.0052 0.0048 0.0052

Table 2.16: Average confidence length and coverage probability of the simulated 95%
confidence intervals of R for σ = 3

(α1, α2)
Average confidence length coverage probability

(m,n) (0.5,0.8) (0.8,1.5) (0.8,0.5) (1.5,0.8) (0.5,0.8) (0.8,1.5) (0.8,0.5) (1.5,0.8)

(20,20) 0.3506 0.3512 0.3505 0.3512 0.9699 0.9799 0.9705 0.9819
(20,25) 0.3328 0.3334 0.3331 0.3339 0.9660 0.9785 0.9612 0.9794
(20,30) 0.3206 0.3210 0.3210 0.3214 0.9641 0.9764 0.9606 0.9739

(25,20) 0.3333 0.3339 0.3329 0.3334 0.9643 0.9762 0.9674 0.9799
(25,25) 0.3145 0.3150 0.3146 0.3150 0.9625 0.9728 0.9583 0.9733
(25,30) 0.3012 0.3016 0.3015 0.3017 0.9607 0.9713 0.9581 0.9677

(30,20) 0.3212 0.3215 0.3205 0.3211 0.9629 0.9753 0.9676 0.9762
(30,25) 0.2991 0.3018 0.3013 0.3017 0.9604 0.9692 0.9571 0.9704
(30,30) 0.2877 0.2880 0.2877 0.2880 0.9503 0.9660 0.9535 0.9655

(40,40) 0.2499 0.2498 0.2498 0.2498 0.9356 0.9485 0.9383 0.9479
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The need for non-Gaussian autoregressive models have been long felt from the fact that

many naturally arising time series are clearly non-Gaussian with Markovian dependence

structure. Many non - Gaussian autoregressive processes were introduced and studied

during the past two decades (see Jayakumar et al. (1995), Jose and Pillai (1995)). Jayaku-

mar and Pillai (1993) introduced and studied first order autoregressive Mittag-Leffler pro-

cess. Pillai and Jayakumar (1995) characterized a pth order autoregressive Mittag-Leffler

process using specialized class L property. Jose and Pillai (1995) developed general-

ized autoregressive time series models in Mittag-Leffler variables.Jose and Seethalakshmi

(2004) studied geometric Mittag-Leffler processes. Jose and Alice (2001), Alice and Jose

(2003, 2004 a,b,c, 2005 a,b) developed autoregressive minification processes and studied

their properties.

Now we discuss some application of MOEE distribution in autoregressive time series

modeling.

Lewis and McKenzie (1991) introduced and discussed minification processes having

structure

Xn = min(aXn−1, εn), n = 1, 2, ..., |a1| < 1

2.9.1 An AR (1) model with MOEE marginal distribution

We construct a first order autoregressive minification process with a more general structure

given by (2.9.1). The model is developed as follows. Consider an AR (1) structure

Xn =

 εn with probability p

min(Xn−1, εn)with probability (1-p); 0 ≤ p ≤ 1
(2.9.1)

where {εn} is a sequence of i.i.d. r.v.s with exponential distribution with unit mean and is

independent of {Xn}.

Theorem 5.1 Consider the AR (1) structure given by (2.9.1). Then {Xn} is stationary

Markovian with MOEE marginal distribution if {εn} is distributed as exponential distribution

50



CHAPTER 2. ON MARSHALL- OLKIN EXTENDED EXPONENTIAL DISTRIBUTION AND APPLICATIONS

with unit mean.

Proof From (2.9.1) it follows that

FXn(x) = pF εn(x) + (1− p)FXn−1(x)F εn(x) (2.9.2)

Under stationary equilibrium

FX(x) =
pF ε(x)

1− (1− p)F ε(x)
and hence F ε(x) =

FX(x)

p+ (1− p)FX(x)
.

If εn ∼ Exp (1), F ε(x) = e−x, then it easily follows that,

FX(x) =
pe−x

1− (1− p)e−x
,

which is the survival function of MOEE (p).

Conversely, if we take,

FXn(x) =
pe−x

1− (1− p)e−x
,

it is easy to show that F εn(x) is distributed as Exp(1) and the process is stationary.

In order to establish stationarity, we proceed as follows. Assume Xn−1
d
= MOEE (p)

and εn
d
= Exp (1), then from (11),

FXn(x) =
pe−x

1− (1− p)e−x
.

This establishes that {Xn} is distributed as MOEE (p).

Even if X0 is arbitrary, it is easy to establish that {Xn} is stationary and is asymptoti-

cally marginally distributed as MOEE (p).

In order to study the behavior of the process we simulate the sample paths for various
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values of p. From the sample path properties it follows that the MOEE AR(1) minification

process can be used for modeling a rich variety of real data from various contexts such as

financial modeling, reliability modeling, hydrological modeling etc.

Now we consider some properties of MOEE AR(1) minification processes we start with

Figure 2.3: Sample paths of MOEE AR (1) process p=0.6,0.8

Figure 2.4: Sample paths of MOEE AR (1) process p= 0.9, 0.5

the joint survival function of the random variables Xn+1 and Xn.

Let S(x, y)=P (Xn+1 > x,Xn > y) be the joint survival function of the random variables

Xn+1 and Xn. Then we have

S(x, y) = pF ε(x)FX(y) + (1− p)F ε(x)FX(max(x, y))

=


F ε(x)FX(y) y > x

F ε(x)(pFX(y) + (1− p)FX(x)), y < x
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=


pe−x−y

1−(1−p)e−y , y > x

pe−x(pe−y+(1−p)e−x−2p(1−p)e−x−y)
(1−(1−p)e−x)(1−(1−p)e−y)

, y < x

The joint survival function Sis not absolutely continuous since the probability P (Xn+1 =

Xn) is positive.Namely, it is easy to show that

P (Xn+1 = Xn) =
−p(1− p+ log p)

(1− p)2
∈ (0, 0.5)

Consider now the probability of the event{Xn+1 > Xn}.From (2.9.1) it follows that

P (Xn+1 > Xn) = pP (εn+1 > xn) =
p(1− p+ p log p)

(1− p)2
,∈ (0, 0.5)

Also, we can show that

P (Xn+2 > Xn) =
p(2− p− p2 + 3p log p)

(1− p)2
∈ (0, 0.5)

We can use these probabilities to estimate the unknown parameter p.Define the random

variablesUn=I(Xn+1 > Xn) and Vn=I(Xn+2 > Xn).It is easy to show thatE(Un)=P (Xn+1 >

Xn) and E(Vn)=P (Xn+2 > Xn). Now we consider the equations

1

N

N∑
i=1

Ui =
p(1− p+ p log p)

(1− p)2

1

N − 1

N−1∑
i=1

Vi =
p(2− p− p2 + 3p log p)

(1− p)2

Solving these equations, we will obtain that the estimator of the unknown parameter p is

given by

p̂ =
3

N

N∑
i−1

Ui −
1

N − 1

N−1∑
i=1

Vi

Since the MOEE AR(1) minification process{Xn} is ergodic, it follows that p̂ is consistent
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estimator for p.

In table 2.6 we give some numerical results of the estimation.We estimate 10000 realiza-

tions of the MOEE AR (1) minification process for the true values p = 0.2, p = 0.4, p = 0.6

and p = 0.8. The simulations are repeated 100 times.We computed the sample means

and the standard errors of the estimate of p̂.

Let us consider the autocovariance function at lag1.After some calculations we obtain that

E(Xn+1Xn) = p

∫ ∞
0

xe−xdx

1− (1− p)e−x
=

p

1− p
.Li2(1− p),

where

Li2(z) = z

∫ ∞
0

xe−xdx

1− ze−x

is dilogarithm. Now, autocovariance function at lag 1 is

cov(Xn+1, Xn) =
p

1− p
.Li2(1− p)− p2logp

(1− p)2

the autocorrelation function at lag1 is

Corr(Xn+1, Xn) =
p(1− p)Li2(1− p)− p2 log p

2p(1− p)Li2(1− p)− p2 log p

The autocovariance function and the autocorrelation function at lag 1 for various values of

p are given at figure ??.
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Figure 2.5: Autocovariance and autocorrelation function at lag 1 for various values of
p

2.10 Extension to kth order processes

In this section we develop a kth order autoregressive model. Consider an autoregressive

model of order k with structure as

Xn =


εn w. p. p0

min(Xn−1, εn) w.p. p1

...

min(Xn−k, εn) w.p. pk.

such that 0 < pi < 1, p1 + p2 + · · · + pk = 1− p0; where {εn} is a sequence of i.i.d r.v.s

following MOEE distribution independent of {Xn−1, Xn−2, . . .}.

FXn(x) = p0F εn(x) + p1FXn−1(x)F εn(x) + · · ·+ pkFXn−k(x)F εn(x)

Under stationary equilibrium,

FX(x) = p0F ε(x) + p1FX(x)F ε(x) + · · ·+ pkFX(x)F ε(x)
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Table 2.17: Some numerical results of the estimation

n p̂(True p = 0.2) SE(p̂) p̂(True p = 0.4) SE(p̂)

100 0.205328 0.050357 0.391892 0.067521

500 0.202402 0.023738 0.397680 0.029513

1000 0.200810 0.017016 0.396480 0.022201

5000 0.200076 0.006890 0.398344 0.011454

10000 0.200169 0.004981 0.399264 0.007092

n p̂(True p = 0.6) SE(p̂) p̂(True p = 0.8) SEp̂

100 0.596091 0.084100 0.796522 0.097800

500 0.595670 0.034729 0.801667 0.038394

1000 0.595555 0.025793 0.802864 0.030903

5000 0.599764 0.010598 0.801462 0.015817

10000 0.598863 0.007853 0.800391 0.011084

This reduces to

FX(x) =
p0F ε(x)

1− (1− p0)F ε(x)

This shows that theorem 5.1 can be suitably extended to this case also.

2.11 Application

Let x1, x2, ....xn be a random sample of size n from MOEE(α, σ) distribution with p.d.f

(2.2.2).The likelihood function is given by

L(α, σ) =
(ασ)nenσx̄

n∏
i=1

(eσxi − (1− α))2
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Table 2.18: Summary of fitting for the MOEE and exponential distribution to the failure
times of the air conditioning system of an airplane.

Model Parameter MLE -Log-likelihood K-S statistic p-value
Exponential σ 0.0168 152.6297 0.2128 0.132

MOEE α 0.4072 151.425 0.1293 0.6978
σ 0.0106

The m.l.e’s of αandσ are given by the solution of the two equations.

n

α
− 2

n∑
i=1

1

eσxi − α
= 0 (2.11.1)

and
n

σ
+ nx− 2

n∑
i=1

xie
σxi

eσxi − α
= 0 (2.11.2)

When α = 1,ie,for exponential distribution σ̂ = 1
x

Here we show that the extended model of exponential distribution can be a better model

than the one parameter exponential model when it is fitted for the following data .

Data set : (Linhart and Zucchini (1986, page 69)). The following data are failure times of

the air conditioning system of an airplane: 23, 261, 87, 7, 120, 14, 62, 47, 225, 71, 246,

21, 42, 20, 5, 12, 120, 11, 3, 14, 71, 11, 14, 11, 16, 90, 1, 16, 52, 95.

Using R program we estimate the parameters and draw the PP plot and QQ plot for the

data. It is clear that the extended exponential distribution significantly improves the fit

given by exponential distribution with single parameter.
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Figure 2.6: PP plot of Exponential model versus MOEE

Figure 2.7: QQ plot of Exponential model versus MOEE
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CHAPTER 3

Marshall-Olkin Extended Fréchet

Distribution and its properties

3.1 Introduction

The Extreme value distribution of type II was named after Fréchet(1927), who devised

one possible limiting distribution for a sequence of maxima, provided convenient scale

normalization. Extreme Value distribution, are widely used in risk management, Finance,

insurance, economics, hydrology, material sciences, telecommunications and many other

industries dealing with extreme events. In recent years the Generalised Extreme value

theory has become increasingly familiar in economics, and particularly in financial econo-

metrics, because of its role in quantifying the probabilities of extreme falls in the value

of financial funds. Harter(1978) prepared an authoritative bibilography of extreme value

theory which is of substantial scientific work.Beirlant et al(1996) provide a lucid practi-

cal analysis of extrme values with emphasis on actuarial applications. More informa-

tion about the Fréchet distribution can be found in Resnick(1987),Kotz and Nadarajah
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(2000), Coles(2001), Johnson et al (2004), De Haan and Ferreira(2006) and Resis and

Thomas(2007). Recently, some generalizations of the Fréchet distribution are considered.

Nadarajah and Kotz (2003) introduced the exponentiated Fréchet distribution with distri-

bution function F (x) = 1 −
(

1− e−(δ/x)β
)α

, x, δ, β, α > 0. For α = 1 the exponentiated

Fréchet distribution becomes the Fréchet distribution with parameters δ and β.Abd-Elfattah

et al (2010)discussed goodness of fit tests for Generalized Frechet Distribution. Nadarajah

and Gupta (2004) introduced the beta Fréchet distribution with the distribution function

F (x) =
1

B(a, b)

∫ e−(δ/x)β

0

wa−1(1− w)b−1 dw, x, δ, β, a, b > 0.

The beta Fréchet distribution generalizes some well know distributions. For a = 1, we

obtain the exponentiated Fréchet distribution with parameters δ, β and α = b. For a = 1

and b = 1 we obtain the Fréchet distribution with parameters δ and β.

In this chapter we introduce a new distribution called Marshall–Olkin Extended Fréchet

distribution is introduced Some properties of the newly introduced distribution such as the

shapes of the probability density and hazard rate functions etc.are considered. The ex-

pression for the moments are given, the Rényi entropy is derived, the density of the order

statistics are derived and the parameters are estimated by the method of maximum likeli-

hood. We analyze a real data set and compare our distribution with the Fréchet, exponen-

tiated Fréchet and beta Fréchet distributions.

3.2 Marshall-Olkin Extended Fréchet distribution

Now we consider the Fréchet distribution with survival function F (x) = 1− e−( δ
x

)β ;

x, δ, β > 0. Then applying (1.2.1),we get a new family of distribution called the Marshall-
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Olkin Extended Fréchet distribution distribution with survival function given by

G(x) =
α[1− e−(δ/x)β ]

α + (1− α)e−(δ/x)β
, x, δ, β, α > 0. (3.2.1)

We shall refer to as MOEFR family and we will denote with MOEFR(δ, β, α) the fact that

a random variable has a MOEFR distribution with parameters δ, β and α. Let us consider

some properties of the distributions from the MOEFR family.

3.2.1 The probability density function

The probability density function is

g(x; δ, β, α) =
αβ
(
δ
x

)β+1
e−(δ/x)β

δ
(
α + (1− α)e−(δ/x)β

)2 , x, δ, β, α > 0.

The probability density function is unimodal and this result follows from the following the-

orem.

Theorem 3.2.1. The probability density function of the MOEFR distribution has a

unique mode at x = x0, where x0 is the solution of the equation

α(β + 1)− αβt(x) + (β + 1)(1− α)e−t(x) + β(1− α)t(x)e−t(x) = 0,

with t(x) = δβx−β.

Proof: The first derivative of the function log g(x) can be written as

(log g(x))′ =
t′(x)s(x)

βt(x)(α + (1− α)e−t(x))
,

where s(x) = α(β + 1) − αβt(x) + (β + 1)(1 − α)e−t(x) + β(1 − α)t(x)e−t(x). The

first derivative of the function s(x) can be written as s′(x) = t′(x)u(x), where u(x) =

−αβ − (1 − α)e−t(x) − β(1 − α)t(x)e−t(x). We can see that for 0 < α < 1, the function

u(x) is negative and since t′(x) is negative, it follows that s′(x) > 0. This implies that the
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function s(x) increases and since s(0) = −∞ and s(∞) = β + 1, it follows that function

s(x) has a unique root, say at x = x0. From this it follows that the function g′(x) is positive

for x < x0 and negative for x > x0. Thus in the case 0 < α < 1, we obtain that the pdf is

unimodal with mode at x = x0. Now we consider the case α > 1. If 0 < β < (α − 1)/α,

then u(x) is an increasing function with u(0) = −αβ and u(∞) = −1 +α−αβ > 0. Thus

u(x) has a unique root, say x1. Then the function s(x) increases on (0, x0] and decreases

on (x0,∞). Since s(0) = −∞ and s(∞) = β + 1, it follows that s(x) has a unique root,

say at x = x0. As in the case 0 < α < 1, we can conclude that g(x) is unimodal function.

If (α − 1)/α < β < 1, then the function u(x) is negative, which implies that the function

s(x) increases. Since s(0) = −∞ and s(∞) = β + 1, we can conclude as in the case

0 < α < 1, that the function g(x) is unimodal. Finally, let us consider the case β > 1. Then

the function u(x) increases on (0, x2] and decreases on (x2,∞), where x2 is the solution

of the equation t(x) = 1 − 1/β. Since u(0) = −αβ, u(∞) = −1 + α − αβ > 0 and

u(x2) = −β
[
α + (1− α)e−t(x2)

]
< −β < 0, it follows that the function u(x) is negative.

This implies that the function s(x) is increasing and the conclusion that the function g(x)

is unimodal follows as above.

3.2.2 The hazard rate function

The hazard rate function is

h(x) =
β
(
δ
x

)β+1
e−(δ/x)β

δ
(
α + (1− α)e−(δ/x)β

)(
1− e−(δ/x)β

) , x, δ, β, α > 0.

The hazard rate function is upside-down bathtub shaped and this follows from the following

theorem.

Theorem 3.2.2. The hazard rate function is uspide-down bathtub shaped with maxi-

mum in x0, where x0 is the solution of the equation

(β + 1)
[
α + (1− 2α)e−t(x)

]
− (1− α)e−2t(x) [β + 1 + βt(x)]− αβt(x) = 0, (3.2.2)
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where t(x) = δβx−β.

Proof: Let v(x) be a left side of the equation (3.2.2). The first derivative of the function

log h(x) is

(log h(x))′ =
t′(x)v(x)

βt(x)(α + (1− α)e−t(x))(1− e−t(x))
.

To prove that the hazard rate function is upside-down bathtub shaped it is sufficient to show

that the function v(x) is negative for x < x0 and positive for x > x0. The first derivative of

the function v(x) can be written as v′(x) = t′(x)w(x), where

w(x) = −αβ − (β + 1)(1− 2α)e−t(x) + (1− α)(β + 2)e−2t(x) + 2(1− α)βt(x)e−2t(x).

Also, the first derivative of the function w(x) can be written as w′(x) = t′(x)e−t(x)z(x),

where

z(x) = (β + 1)(1− 2α)− 4(1− α)e−t(x)(1 + βt(x)).

We can see that if 1/2 < α < 1, then the function z(x) is negative, which implies that

the function w(x) increases with w(0) = −αβ and w(∞) = 1. Thus the function w(x)

has unique root, say x1. From this it follows that the function v(x) increases on (0, x1] and

decreases on (x1,∞). Since v(0) = −∞ and v(∞) = 0, it follows that the function v(x)

has unique root, say x0. Also, we obtain that v(x) is negative for x < x0 and positive for

x > x0. Let us consider the case 0 < α < 1/2. Suppose first that 0 < β < 1. Then

the function z(x) is increasing function with z(0) = (1 − 2α)(1 + β) > 0 and z(∞) =

−3+2α+β−2αβ < 0. Thus z(x) has unique root, say x2, which implies that the function

w(x) decreases on (0, x2] and increases on (x2,∞). Since w(0) = −αβ and w(∞) = 1,

it follows that the function w(x) has unique root, say x1, with w(x) < 0 for x < x1 and

w(x) > 0 for x > x1. This implies that the function v(x) has the same behavior as in the

case 1/2 < α < 1. Let 0 < α < 1/2 and β > 1. Then the function increases on (0, x3]

and decreases on (x3,∞), where x3 is the solution of the equation t(x) = 1 − 1/β. As

before, we have that z(0) = (1 − 2α)(1 + β) > 0, but z(∞) = −3 + 2α + β − 2αβ can

be positive or negative. If −3 + 2α + β − 2αβ < 0, then the function z(x) has unique
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root, say x2, with z(x) > 0 for x < x2 and z(x) < 0 for x > x2. Then the function w(x)

has the same behavior as in the case 0 < α < 1/2 and 0 < β < 1. Thus from this it

follows that v(x) is negative for x < x0 and positive for x > x0. If −3 + 2α+ β− 2αβ > 0,

then the function z(x) has two roots, say x21 and x22. From this it follows that the function

w(x) decreases on (0, x21] ∪ (x22,∞) and increases on (x21, x22]. Since w(0) = −αβ
and w(∞) = 1, we obtain that the functions w(x) and v(x) have the same behaviors as in

the above case. Finally, let us consider the case α > 1. As before, let us first consider the

case 0 < β < 1. It follows that the function z(x) increases with z(0) = (1−2α)(1+β) < 0

and z(∞) = −3 + 2α + β − 2αβ which can be positive or negative. It is easy to show

that when z(∞) < 0, the functions w(x) and v(x) have the same behaviors as in the case

1/2 < α < 1. If z(∞) > 0, then the function z(x) has unique root, say x2. This implies

that the function w(x) increases on (0, x2] and decreases on (x2,∞). Since w(0) = −αβ
and w(∞) = 1, it follows that the function w(x) has unique root, say x1, with w(x) < 0

for x < x1 and w(x) > 0 for x > x1. This implies that the function v(x) has the same

behavior as in the case 1/2 < α < 1. Similarly as in the above cases, we can show that

in the case α > 1 and β > 1, the function v(x) has the same behavior as in the case

1/2 < α < 1. Figure 3.1 gives the graphs of the functions g(x) and h(x) for different

values of the parameters δ, β and α.

3.2.3 Moments, Quantiles and Rényi entropy

If a random variable X has MOEFR(δ, β, α) distribution, then the random variable Y =

X/δ has MOEFR(1, β, α) distribution. Thus, we will consider the nth moment of the ran-

dom variable Y with MOEFR(1, β, α) distribution. Making the substitution u = y−β, the

nth moment of the random variable Y can be written as

E(Y n) = αβ

∫ ∞
0

yn−β−1e−y
−β

(α + (1− α)e−y−β)2
dy = α

∫ ∞
0

u−n/βe−udu

(α + (1− α)e−u)2
.
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Figure 3.1: Probability density function (top) and hazard rate function (bottom) of the MOEFR
distribution for different values of the parameters δ, β and α.

If α > 1/2, then using the expansion

1

(α + (1− α)e−u)2
=

1

α2

∞∑
i=1

i

(
α− 1

α

)i−1

e−(i−1)u,

we obtain that for n < β and α > 1/2

E(Y n) =
1

α

∞∑
i=1

(
α− 1

α

)i−1

in/βΓ

(
1− n

β

)
= α−1Γ

(
1− n

β

)
Φ

(
α− 1

α
,−n

β
, 1

)
,
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where Φ is Lerch transcendental function defined as Φ(x, s, ν) =
∑∞

n=0
xn

(n+ν)s
. If 0 < α <

2, then using the expansion

1

(α + (1− α)e−u)2
=

∞∑
i=1

i (1− α)i−1 (1− e−u)i−1

=
∞∑
i=1

i (1− α)i−1
i−1∑
j=0

(
i− 1

j

)
(−1)je−ju,

we obtain that for n < β and 0 < α < 2, the nth moment is given as

E(Y n) = αΓ

(
1− n

β

) ∞∑
i=1

i(1− α)i−1

i−1∑
j=0

(
i− 1

j

)
(−1)j(1 + j)n/β−1.

Figure 3.2 gives the expectation, standard deviation, skewness and kurtosis of random

variable with MOEFR(1, β, α) distribution as a function of α and β. The qth quantile of the

Figure 3.2: The expectation, standard deviation, skewness and kurtosis of a random variable
with MOEFR(1, β, α) distribution.
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MOEFR distribution is given by

xq = G−1(q) = δ[log(
1− (1− α)q

αq
)]−1/β , 0 ≤ q ≤ 1,

where G−1(·) is the inverse distribution function. The median of the distribution is hence

median(X) = δ[log(
α + 1

α
)]−1/β.

Rényi entropy The entropy represents a measure of uncertainty variation of a random

variable.Rényi(1961) introduced a new measure of entropy called Rényi entropy. The

Rényi entropy is defined as IR(γ) = 1
1−γ log

∫
R
gγ(x)dx, γ > 0 and γ 6= 1.Rényi entropy

of order 1 is Shannon entropy. We consider first gγ(x) given by,

gγ(x) =
αγβγ

(
γ
x

)(β+1)γ
e−γ(δ/x)β

δγ
(
α + (1− α)e−(δ/x)β

)2γ .

Suppose that α > 1
2
. Using the series expansion

(
α + (1− α)e−(δ/x)β

)−2γ

= α−2γ

∞∑
k=0

Γ(2γ + k)

Γ(2γ)k!

(
1− 1

α

)k
e−k(δ/x)β ,

and by making the substitution y = (δ/x)β, for (β + 1)γ > 1 we have ,

∫ ∞
0

gγ(x)dx =
βγ

αγδγ

∞∑
k=0

Γ(2γ + k)

Γ(2γ)k!

(
1− 1

α

)k ∫ ∞
0

(
δ

x

)(β+1)γ

e−(k+γ)(δ/x)βdx

=
βγ−1

αγδγ−1

∞∑
k=0

Γ(2γ + k)

Γ(2γ)k!

(
1− 1

α

)k
Γ

(
(β + 1)γ − 1

β

)
(k + γ)

1−(β+1)γ
β .

Thus we obtain that in the case α > 1/2, the Rényi entropy is

IR(γ) =
1

1− γ
log

{
βγ−1

αγδγ−1

∞∑
k=0

Γ(2γ + k)

Γ(2γ)k!

(
1− 1

α

)k
Γ

(
(β + 1)γ − 1

β

)
(k + γ)

1−(β+1)γ
β

}
.
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Similarly, we can show that in the case 0 < α < 2 and by using the series expansion

(
α + (1− α)e−(δ/x)β

)−2γ

=
∞∑
k=0

Γ(2γ + k)

Γ(2γ)k!
(1− α)k

(
1− e−(δ/x)β

)k
,

the Rényi entropy is

IR(γ) =
1

1− γ
log

{
αγβγ−1

δγ−1

∞∑
k=0

Γ(2γ + k)

Γ(2γ)k!
(1− α)k

k∑
j=0

(
k

j

)
(−1)j ×

Γ

(
(β + 1)γ − 1

β

)
(j + γ)

1−(β+1)γ
β

}
.

3.2.4 Compounding

Ghitany et al. (2005, 2007) and Ghitany and Kotz (2007) expressed Marshall–Olkin ex-

tended forms of Pareto, Weibull, Lomax and linear exponential family of distributions as a

compound distribution with exponential distribution as mixing density. Now we show that

under suitable conditions MOEFR distribution can be expressed as a compound distribu-

tion with exponential distribution as mixing density.

Theorem 3.2.3. Let X be a continuous random variable with conditional pdf given as

G(x|θ) = exp

{
−
((

1− e−(δ/x)β
)−1

− 1

)
θ

}
, x, δ, β, θ > 0.

Let Θ follows an exponential distribution with pdf given by m(θ) = αe−αθ, θ, α > 0.

Then the compound distribution of X becomes the MOEFR (δ, β, α) distribution.

Proof: For all x > 0, δ > 0, β > 0, α > 0, the unconditional survival function of X is given
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by

G(x) =

∫ ∞
0

G(x|θ)m(θ)dθ

= α

∫ ∞
0

exp

{
−
((

1− e−(δ/x)β
)−1

− 1

)
θ

}
e−αθdθ

=
α(1− e−(δ/x)β)

1− (1− α)(1− e−(δ/x)β)
,

which is the survival function of a random variable with MOEFR distribution.

3.2.5 Order statistics

There are several books that deal with the asymptotic theory of extremes and their

statistical applications.David(1981)and Arnold,Balakrishna and Nagarajha(1992) provide

a compact account of the asymptotic theory of extremes.Galambos(1978,1987) present

elaborate treatment of this topic.LetX1,X2, . . . ,Xn be random variables from a population

with the MOEFR(δ, β, α) distribution. Let Xi:n denote the ith order statistics. Then the

probability density function of the random variable Xi:n is

gi:n(x) =
n!

(i− 1)!(n− i)!
g(x)Gi−1(x) (1−G(x))n−i

=
n!

(i− 1)!(n− i)!
αn+1−iβ

δ

(
δ
x

)β+1
e−i(δ/x)β

(
1− e−(δ/x)β

)n−i
(
α + (1− α)e−(δ/x)β

)n+1 .

Now we will show that the probability density function gi:n(x) can be represented as infinite

mixture of the beta Fréchet distributed random variables. As before, let us consider two

cases, when α > 1/2 and 0 < α < 2. Let us first consider the case α > 1/2. Using the

series expansion

(
α + (1− α)e−(δ/x)β

)−n−1

= α−n−1

∞∑
k=0

(
n+ k

k

)(
1− 1

α

)k
e−k(δ/x)β ,

73



CHAPTER 3. MARSHALL-OLKIN EXTENDED FRÉCHET DISTRIBUTION AND ITS PROPERTIES

we obtain that

gi:n(x) =
n!β

(i− 1)!(n− i)!αiδ

∞∑
k=0

(
n+ k

k

)(
1− 1

α

)k (
δ

x

)β+1

e−(k+i)(δ/x)β(1− e−(δ/x)β)n−i

=
n!α−i

(i− 1)!(n− i)!

∞∑
k=0

(
n+ k

k

)(
1− 1

α

)k
B(k + i, n− i+ 1)×

fBF (x; δ, β, k + i, n− i+ 1),

where fBF (x; δ, β, a, b) represents the beta Fréchet distribution with parameters δ, β, a

and b. Similarly, in the case 0 < α < 2, using the series expansion

(
α + (1− α)e−(δ/x)β

)−n−1

=
∞∑
k=0

(
n+ k

k

)
(1− α)k (1− e−(δ/x)β)k,

we obtain that

gi:n(x) =
n!

(i− 1)!(n− i)!
αn−i+1β

δ

∞∑
k=0

(
n+ k

k

)
(1− α)k

(
δ

x

)β+1

e−i(δ/x)β(1− e−(δ/x)β)n−i+k

=
n!αn−i+1

(i− 1)!(n− i)!

∞∑
k=0

(
n+ k

k

)(
1− 1

α

)k
B(i, n− i+ k + 1)×

fBF (x; δ, β, i, n− i+ k + 1).

In some cases it is important to derive the asymptotic distribution of the sample maxima

Xn:n = max(X1, X2, . . . , Xn). Its asymptotic distribution follows from the following theo-

rem.

Theorem 3.2.4. Let X1, X2, . . . , Xn be a random sample of size n from a population

with the MOEFR distribution. Then

lim
n→∞

P (Xn:n ≤ bnt) = exp(−t−β), t > 0,
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which is of Fréchet type, where

bn = δ

[
log

(
1 +

1

α(n− 1)

)]−1
β

.

Proof: Since lim
t→∞

t h(t) = β, the proof follows from the Theorem 8.3.3 (Arnold et al.,

1992).

3.2.6 Estimation of parameters

Since the moments of a random variable with the MOEFR distribution can not be presented

in closed form, we must consider other methods for estimation of the unknown parameters.

We estimate the unknown parameters of theMarshall-Olkin Extended Fréchet distribution

distribution using the maximum likelihood estimation method. Let x1, x2, . . . , xn be an

observed sample. Then the corresponding log-likelihood function is

logL =n logα + n log β + (β + 1)
n∑
i=1

log (δ/xi)−
n∑
i=1

(δ/xi)
β

− n log δ − 2
n∑
i=1

log(α + (1− α)e−(δ/xi)
β

).
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The normal equations become

∂ logL

∂δ
=
n(β + 1)

δ
− βδβ−1

n∑
i=1

x−βi −
n

δ

+ 2(1− α)βδβ−1

n∑
i=1

e−(δ/xi)
β

xβi (α + (1− α)e−(δ/xi)
β
)

= 0

∂ logL

∂β
=
n

β
+

n∑
i=1

log (δ/xi)− δβ
n∑
i=1

x−βi log (δ/xi)

+ 2(1− α)δβ
n∑
i=1

e−(δ/xi)
β

log (δ/xi)

xβi (α + (1− α)e−(δ/xi)
β
)

= 0

∂ logL

∂α
=
n

α
− 2

n∑
i=1

1− e−(δ/xi)
β

α + (1− α)e−(δ/xi)
β = 0.

Solution of these non-linear system of equations gives the estimates of the parameters.

The maximum likelihood estimates can be easily obtained in any statistical package, for

example in R using the function nlm.

3.3 Data analysis

In this section we compare our distribution with the Fréchet, the exponentiated Fréchet and

beta Fréchet distributions. We consider the data set from Bjerkedal (1960). This data set

consists 72 observations of survival times of injected guinea pigs with different doses of

tubercle bacilli: 12, 15, 22, 24, 24, 32, 32, 33, 34, 38, 38, 43, 44, 48, 52, 53, 54, 54, 55,

56, 57, 58, 58, 59, 60, 60, 60, 60, 61, 62, 63, 65, 65, 67, 68, 70, 70, 72, 73, 75, 76, 76, 81,

83, 84, 85, 87, 91, 95, 96, 98, 99, 109, 110, 121, 127, 129, 131, 143, 146, 146, 175, 175,

211, 233, 258, 258, 263, 297, 341, 341, 376.

We estimate the unknown parameters of each distribution by the method of maximum

likelihood estimation. Then for obtained maximum likelihood estimates we derived the

values of two criterias AIC and BIC, the values of Kolmogorov-Smirnov statistics and the
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Table 3.1: Maximum likelihood estimates, Kolmogorov-Smirnov statistics and p-values
for the survival times of injected guinea pigs.

Distribution Estimates AIC BIC K-S p-value
Fréchet(δ, β) 54.1888 1.4148 795.3 799.9 0.1520 0.0644
EF(δ, β, α) 336.3775 0.6207 8.2725 786.5 793.3 0.1003 0.4358
BF(δ, β, a, b) 33.1871 0.1805 47.7665 65.1072 788.5 797.6 0.0998 0.4418
MOF(δ, β, α) 14.2086 2.4810 61.7630 785.4 792.2 0.0896 0.5788

appropriate p-values. The results are presented in Table 3.1.

Also, we draw the estimated cumulative distribution functions and the P-P plots for

each fitted distributions and are presented in Figure 3.3 and in Figur3.4. We can see that

the Marshall-Olkin Extended Fréchet distribution provides a good fit and can be used as a

competitive model to the other considered models.
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Figure 3.3: The fitted CDF for the data from Bjerkedal (1960).

Figure 3.4: The P-P plots for the data from Bjerkedal (1960).
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CHAPTER 4

Applications of Marshall-Olkin Extended

Fréchet Distribution

4.1 Introduction

In chapter 3 we have introduced Marshall-Olkin Fréchet distribution with survival function

G(x) =
α[1− e−(δ/x)β ]

α + (1− α)e−(δ/x)β
, x, δ, β, α > 0. (4.1.1)

and studied various properties including estimation of parameters. As a sequel, in this

chapter we discuss the applications of the newly developed distribution in reliability con-

texts, acceptance sampling and time series analysis. The reliability is defined as the prob-

ability of not failing denoted by R = P (X < Y ) where X represents the stress and Y

represents the the strength of a component. This measure of reliability is widely used in

engineering problems. It may be noted that R has more interest than just a reliability mea-

sure.It can be used as a general measure of difference between two populations such as
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treatment group and control group in bio-statistical contexts and clinical trials.In most of

the work in the evaluation of R = P (X < Y ) it is assumed that both random variables has

distribution belonging to the same family and more significantly it assumes independence

between them.This problem has been extensively studied for various probability models in-

cluding exponential,generalised exponential,gamma,Weibull and Burr distributionsetc.For

details one can refer the works of Constantine et al(1986) for the gamma case, Surles and

Padgett(2001)for Burr type X model, Nadarajah(2004) for Laplace distribution,Kundu and

Gupta (2005) for generalised exponential distribution,Kundu and Gupta (2006)for Weibull

distribution,Kakade et al(2008) for exponentiated Gumbel distribution,Raqab et al(2008) for

3-parameter generalised exponential distribution,Gupta et al(2010) for Marshall-Olkin ex-

tended Lomax distribution and recently Bindu(2011) for double Lomax distribution.Raqab

and Kundu (2005) made study on the comparison of different estimators of P (Y < X) for

a scaled Burr Type X distribution. Acceptance sampling plans are hypothesis tests of the

product that has been submitted for an appraisal and subsequently resulted with accep-

tance or rejection.A sample is selected or checked for various charecteristics.The decision

is based on the amount of defect or defective units found in the sample. Effective sam-

pling techniques involves effective selection of the products and the application of specific

rules for lot inspection that follows the standards.In literature various authors have devel-

oped acceptance sampling plan based on different probability models. For example one

can refer the works of Kantam and Rosaiah (1998) based on Half logistic model,Kantam

et al(2001) based on Log-logstic model,Rosaiah and Kantam (2005) based on Inverse

Rayleigh model ,Rosaiah et al(2006) based on exponentiated Log-logstic model and Srini-

vasa Rao et al (2009) based on Marshall-Olkin extended exponential model.Time series

modeling is finding its application in diversified fields today. Economics, social sciences,

demography, medical sciences, actuarial science are very few of them. Warming trend

in global temperature, levels of pollution causing mortality in a particular region are other

major areas in present scenario where time series modeling is found effective. Gaver and

Lewis (1980)developed a first order autoregressive time series model with exponential
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stationary marginal distribution. They extended it to the case of gamma and mixed expo-

nential processes. Jayakumar and Pillai (1993) extended it to the case of Mittag–Leffler

processes. Several authors have developed similar processes with other non-Gaussian

marginals like Weibull, Laplace, Linnik etc. Brown et al. (1984), Gibson (1986), Anderson

and Arnold (1993), Alice and Jose (2001,2004), Naik and Jose (2008) are some of the

researchers who worked on this topic.

In this chapter we discuss stress-strength analysis with respect to a simulated data as

well as a real data based on Marshall-Olkin extended Fréchet distribution. We develop an

acceptance sampling plan for the life time of a product following the new distribution.Finally

we develop four types of AR(1) models with the extended distribution as marginals and

derive some properties of these models.

4.2 Stress-strength analysis

Here we consider the statistical inference of the stress-strength parameter

R =P (X < Y ) when X and Y are independent Marshall-Olkin extended Fréchet ran-

dom variables with parameters (δ, β, α1) and (δ, β, α2), respectively. Then using Gupta et

al(2010), we obtain ,

P (X < Y ) =

∫ ∞
−∞

P (Y > X/X = x)gX(x)dx

=

∫ ∞
0

α2(1− e−( δ
x

)β)

α2 + (1− α2)e−( δ
x

)β

α1βδ
βe−( δ

x
)β

xβ+1(α1 + (1− α1)e−( δ
x

)β)2
dx

=
α

(α− 1)2
[− logα + α− 1] ,

where α = α2/α1.

Now we consider the pdf of the Marshall-Olkin Extended Fréchet distribution given by

g(x;α, δ, β) =
αβδβe−( δ

x
)β

xβ+1(α + (1− α)e−( δ
x

)β)2
, x, α, δ, β > 0.

83



CHAPTER 4. APPLICATIONS OF MARSHALL-OLKIN EXTENDED FRÉCHET DISTRIBUTION

Let (x1, . . . , xm) and (y1, . . . , yn) be two independent random samples of sizes m and n

from Marshall-Olkin Extended Fréchet distributions with tilt parameters α1 and α2, respec-

tively, and common unknown parameters δ and β. The log likelihood function is given

by

L(α1, α2, δ, β) =
m∑
i=1

log g(xi;α1, δ, β) +
n∑
i=1

log g(yi;α2, δ, β)

= m logα1 + n logα2 + (m+ n) log β + (m+ n)β log δ −
m∑
i=1

(δ/xi)
β

−
m∑
j=1

(δ/yj)
β − (β + 1)

m∑
i=1

log xi − (β + 1)
n∑
j=1

log yj

−2
m∑
i=1

log(α1 + (1− α1)e−(δ/xi)
β

)− 2
n∑
j=1

log(α2 + (1− α2)e−(δ/yj)
β

).

The maximum likelihood estimates of the unknown parameters α1, α2 are the solutions of

the non-linear equations

∂L

∂α1

=
m

α1

− 2
m∑
i=1

1− e−( δ
xi

)β

α1 + (1− α1)e
−( δ

xi
)β

= 0,

∂L

∂α2

=
n

α2

− 2
n∑
j=1

1− e−( δ
yj

)β

α2 + (1− α2)e
−( δ

yj
)β

= 0.
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The elements of information matrix are

I11 = −E
(
∂2L

∂α2
1

)
=

m

α2
1

− 2mE

(
(1− e−( δ

X
)β)2

[1− ᾱ1(1− e−( δ
X

)β)]2

)

=
m

α2
1

− 2m

∫ ∞
0

(1− e−( δ
x

)β)2α1β( δ
x
)β+1e−( δ

x
)βdx

δ(1− ᾱ1(1− e−( δ
x

)β))4

=
m

α2
1

− 2mα1

∫ 1

0

t2

(1− ᾱt)4
dt

= m(
1

α2
1

− 2

3α2
1

)

=
m

3α2
1

.

Similarly,

I22 = −E
(
∂2L

∂α2
2

)
=

n

3α2
2

I12= I21 = −E
(

∂2L

∂α1∂α2

)
= 0.

By the property of m.l.e for m→∞, n→∞, we obtain that

(
√
m(α̂1 − α1),

√
n(α̂2 − α2))T

d→ N2

(
0, diag{a−1

11 , a
−1
22 }
)
,

where a11 = lim
m,n→∞

1

m
I11 =

1

3α2
1

and a22 = lim
m,n→∞

1

n
I22 =

1

3α2
2

. The 95% confidence

interval for R is given by

R̂∓ 1.96 α̂1b1(α̂1, α̂2)

√
3

m
+

3

n
,

where R̂ = R(α̂1, α̂2) is the estimator of R and

b1(α1, α2) =
∂R

∂α1

=
α2

(α1 − α2)3

[
2(α1 − α2) + (α1 + α2) log

α2

α1

]
.
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4.2.1 Simulation Study

We generate N = 10, 000 sets of X-samples and Y -samples from Marshall-Olkin Ex-

tended Fréchet distribution with parameters α1, δ, β and α2, δ, β, respectively. The com-

binations of samples of sizes m = 20, 25, 30 and n = 20, 25, 30 are considered. The

estimates of α1 and α2 are then obtained from each sample to obtain R̂. The validity of

the estimate of R is discussed by the measures:

1) Average bias of the simulated N estimates of R:

1

N

N∑
i=1

(R̂i −R)

2) Average mean square error of the simulated N estimates of R:

1

N

N∑
i=1

(R̂i −R)2

3) Average length of the asymptotic 95% confidence intervals of R:

1

N

N∑
i=1

2(1.96)α̂1i b1i(α̂α1i, α̂α2i)

√
3

m
+

3

n

4) The coverage probability of the N simulated confidence intervals given by the pro-

portion of such interval that include the parameter R.

The numerical values obtained for the measures listed above are presented in Tables 4.1

and 4.2. For α1 < α2 the average bias is positive and for α1 > α2, the average bias is

negative but in both cases the average bias decreases as the sample size increases. The

performance of confidence interval is quite satisfactory. The coverage probability is close

to 0.95 and approaches the nominal value as the sample size increases. The simulation

study indicates that the average bias, average MSE, average confidence interval and cov-

erage probability do not show much variability for various parameter combinations.
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Data analysis Let us consider now the data from Gupta et al (2010). We consider two

Table 4.1: Average bias and average MSE of the simulated estimates of R for δ = 3
and β = 2.

(α1, α2)
Average bias (b̄) Average Mean Square Error AMSE

(m,n) (0.5,0.8) (0.8,1.2) (0.8,0.5) (1.2,0.8) (0.5,0.8) (0.8,1.2) ( 0.8,0.5) (1.2,0.8)
(20,20) 0.0833 0.0739 -0.0830 -0.0732 0.0083 0.0071 0.0084 0.0070
(20,25) 0.0830 0.0736 -0.0836 -0.0742 0.0085 0.0071 0.0085 0.0072
(20,30) 0.0820 0.0740 -0.0833 -0.0736 0.0084 0.0072 0.0084 0.0071
(25,20) 0.0851 0.0763 -0.0833 -0.0717 0.0086 0.0072 0.0079 0.0066
(25,25) 0.0844 0.0755 -0.0814 -0.0721 0.0085 0.0071 0.0079 0.0067
(25,30) 0.0846 0.0752 -0.0809 -0.0720 0.0085 0.0071 0.0079 0.0067
(30,20) 0.0862 0.0763 -0.0798 -0.0714 0.0087 0.0072 0.0076 0.0065
(30,25) 0.0859 0.0764 -0.7999 -0.0706 0.0087 0.0072 0.0076 0.0063
(30,30) 0.0852 0.0762 -0.0801 -0.0710 0.0085 0.0072 0.0077 0.0064

Table 4.2: Average confidence length and coverage probability of the simulated 95
percentage confidence intervals of R for δ = 3 and β = 2.

(α1, α2)
Average confidence length coverage probability

(m,n) (0.5,0.8) (0.8,1.2) (0.8,0.5) (1.2,0.8) (0.5,0.8) (0.8,1.2) (0.8,0.5) (1.2,0.8)
(20,20) 0.3559 0.3557 0.3558 0.3556 0.989 0.9912 0.9894 0.9925
(20,25) 0.3376 0.334 0.3376 0.3373 0.9797 0.9848 0.9817 0.9865
(20,30) 0.3248 0.3246 0.3215 0.346 0.9755 0.979 0.9763 0.9801
(25,20) 0.3377 0.3376 0.338 0.3348 0.9816 0.9871 0.9889 0.9911
(25,25) 0.3183 0.3182 0.3185 0.3183 0.9715 0.9791 0.9799 0.9856
(25,30) 0.3049 0.3047 0.305 0.3048 0.9574 0.9718 0.9724 0.9774
(30,20) 0.3248 0.3249 0.3252 0.325 0.9789 0.9832 0.988 0.9916
(30,25) 0.305 0.3048 0.3055 0.3049 0.9625 0.9724 0.9799 0.9844
(30,30) 0.2908 0.2906 0.2909 0.2907 0.9512 0.9624 0.9665 0.9767

data sets which represents the times (in hours) of successive failure intervals of the air

conditioning system of two jet planes.

The data set for X is 23, 261, 87, 7, 120, 14, 62, 47, 225, 71, 246, 21, 42, 20, 5, 12, 120,

11, 3, 14, 71, 11, 14, 11, 16, 90, 1, 16, 52, 95.

The data set for Y is 487, 18, 100, 7, 98, 5, 85, 91, 43, 230, 3, 130. First we fit the

Fréchet distribution with parameters δ and β for each data set separately. For the first

data set we obtained the estimates δ̂ = 14.616 and β̂ = 0.724 with the estimated log-
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likelihood as −155.1144. For the second data set we obtained the estimates δ̂ = 20.796

and β̂ = 0.656 with the estimated log-likelihood as −69.2517. Now we consider the values

δ̂ = (14.616 + 20.796)/2 = 17.706 and β̂ = (0.724 + 0.656)/2 = 0.690.

We test the null hypotheses that the true values are δ = 17.706 and β = 0.690. The

chi-square statistic and the p-value of the likelihood ratio test are 0.5098 and 0.7750 re-

spectively.

For the second data set, the chi-square statistic and the p-value of the likelihood ratio test

are respectively 0.1405 and 0.9322. We can conclude that we can accept the null hypothe-

ses that the true values are δ = 17.706 and β = 0.690.

Table 4.3 gives a comparison between the Fréchet model and the Lomax model given in

Gupta et al (2010).It is clear that the Fréchet model is a better fit than the other.

Table 4.3: χ2 and p-values for the data set of successive failure times of the air condi-
tioning system of two jet planes

Distribution χ2 value p-Value
plane-1 plane-2 plane-1 plane-2

Lomax 1.0232 1.0194 0.5995 0.6007
Fréchet 0.5098 0.1405 0.7750 0.9322

Now we derive the estimates of the parameters α1 and α2 for the Marshall-Olkin Extended

Fréchet distribution. We obtain α̂1 = 0.9501, α̂2 = 1.1241 and R̂ = 0.5280 with standard

error SE(R̂) = 0.0983. The asymptotic 95% confidence interval of R is (0.3353, 0.7207).

4.3 Reliability test plan

Here we discuss the reliability test plan for accepting or rejecting a lot where the life time

of the product follows Marshall-Olkin Extended Fréchet distribution. In a life testing ex-

periment the procedure is to terminate the test by a pre-determined time ’t’ and note the

number of failures. If the number of failures at the end of time ’t’ does not exceed a given

number ’c’, called acceptance number then we accept the lot with a given probability of at

least p∗. But if the number of failures exceeds ’c’ before time ’t’ then the test is terminated
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and the lot is rejected. For such truncated life test and the associated decision rule we are

interested in obtaining the smallest sample size to arrive at a decision. For Marshall-Olkin

Extended Fréchet distribution with probability of failure,

G(x, α, β, δ) =
e−( δ

x
)β

α + αe−( δ
x

)β
, x, α, β, δ > 0, (4.3.1)

the average life time depends only on δ if α and β are known. Let δ0 be the required

minimum average life time. Then

G(x, α, β, δ) ≤ G(x, α, β, δ0)⇔ δ ≥ δ0.

A sampling plan is specified by the following quantities:

1) the number of units n on test,

2) the acceptance number c,

3) the maximum test duration t, and

4) the minimum average lifetime represented by δ0.

The consumers risk, i.e. the probability of accepting a bad lot should not exceed the

value 1 − p∗, where p∗ is a lower bound for the probability that a lot of true value δ below

δ0 is rejected by the sampling plan. For fixed p∗ the sampling plan is characterized by

(n, c, t/δ0). By sufficiently large lots we can apply binomial distribution to find acceptance

probability. The problem is to determine the smallest positive integer ’n’ for given value of

c and t/δ0 such that

L(p0) =
c∑
i=0

(
n

i

)
pi0(1− p0)n−i ≤ 1− p∗, (4.3.2)

where p0 = G(t, α, β, δ0). The function L(p) is called operating characteristic function

of the sampling plan, i.e. the acceptance probability of the lot as a function of the failure
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probability p(δ) = G(t, α, β, δ). The average life time of the product is increasing with δ and

therefore the failure probability p(δ) decreases implying that the operating characteristic

function is increasing in δ. The minimum values of n satisfying (4.3.2) are obtained for

α = 2, β = 2 and p∗ = 0.75, 0.90, 0.95, 0.99 and t/δ0=0.90,0.1.05,1.4,1.65,1.90,2.15,2.4

and 2.65. The results are displayed in Table 4.4. If p0 = G(t, α, β, δ0) is small and n is

large, the binomial probability may be approximated by Poisson probability with parameter

λ = np0 so that (4.3.2) becomes

L1(p0) =
c∑
i=0

λi

i!
e−λ ≤ 1− p ∗ . (4.3.3)

The minimum values of n satisfying (4.3.3) are obtained for the same combination of val-

ues of α, β and t/δ0 for various values of p∗ are presented in Table 4.5. The operating

characteristic function of the sampling plan (n, c, t/δ0)gives the probability L(p) of accept-

ing the lot with

L(p) =
c∑
i=0

(
n

i

)
pi0(1− p0)n−i (4.3.4)

where p = G(t, δ) is considered as a function of δ. For given p∗ ,t/δ0 the choice of c and

n are made on the basis of characteristics.Considering the fact that

p = G(
t

δ0

/
δ

δ0

) (4.3.5)

values of operating characteristics for a few sampling plans are calculated and presented

in Table 4.6

The producers risk is the probability of rejecting a lot when δ > δ0. For the given value

of producers risk say say 0.05 we obtain p from the sampling plan given in Table 4.4 and

satisfying the equation (4.3.5)

c∑
i=0

(
n

i

)
pi0(1− p0)n−i ≥ 0.95 (4.3.6)
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If one is interested in knowing what value of δ/δ0 will ensure a producers risk less than

or equal to 0.05 if a sampling plan under discussion is adopted it can be obtained from

p = G(t, α, β, δ)and then using (4.3.5)and is presented in Table 4.7.

4.3.1 Illustration of Table and application of sampling plan

Assume that the life time distribution is Marshall-Olkin Extended Fréchet distribution with

α = 2 and β = 2 .Suppose that the experimenter is interested in establishing that the true

unknown average lifetime is at least 952 hours.Suppose that it is desired to stop the the

experiment at t=1000 hours.So if consumers risk is is set to be 1 − p∗ = .10 then from

Table5.4 sampling plan is (n = 20, c = 2, t/δ0 = 1.05). ie; if during 1000 hours,not more

than 2 failures out of 20 are observed then the experimenter can assert with confidence

limit 0.90 that the average life is at least 1050 hours.If we use Poisson approximation to

binomial the corresponding value is n=22.

For the sampling plan (n = 11, c = 2, t/δ0 = 1.4) with the consumer risk 0.10 under

the Marshall-Olkin Extended Fréchet distribution the operating characteristic values from

Table 4.6 are,

δ
δ0

1.6 1.8 1.95 2.0 2.2 2.4 2.6

L(p) 0.7584 0.8975 0.9522 0.9637 0.9891 0.9972 0.9994

This shows that when δ
δ0

= 1.95 producers risk is 0.05 and when δ
δ0

= 2.4 it is negligible.

From Table 4.6 for this plan it can be observed that the minimum of δ
δ0

which gives the

producers risk as 0.05 is 1.96.

Similarly,If consumers risk is fixed as 0.05 then from Table 4.6 for the sampling plan

(n = 13, c = 2, t/δ0 = 1.4) and with consumer risk is 0.05,the operating characteristic

values are,

δ
δ0

1.5 2 2.03 2.5 3 3.5 4

L(p) 0.5443 0.9434 0.9519 0.9977 0.9999 1.0000 1.0000

This describes that when δ
δ0

= 2.03 producers risk is 0.05 and when δ
δ0

= 2.5 it is negligi-

ble. From Table 4.7 for this plan it can be observed that the minimum of δ
δ0

which gives the

producers risk as 0.05 is also 2.03.
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It is clear from the above descriptions that if the consumer risk is fixed at a particular level

the quality improvement may be required only up to a fixed extended level.

The OC curve drawn for p∗ = 0.75 and for the sampling plan (n, c, t
δ0

) (Fig 4.1) indicates

the discriminating power of the sampling plan at various values of t
δ0

, giving the quality

realised by the product of specific producers risk. Using graphs drawn for (p∗, t
δ0

) and for

various values of c,(Fig.4. 2, Fig.4. 3 and Fig.4.4)one can obtain the minimum ratio of δ
δ0

at any specified level giving minimum quality realised by the selected process.

Application Consider a simulated data of failure times generated from Marshall-olkin Ex-

tended Fréchet distribution with α = 2, β = 2 and δ = 4 of size 14. The ordered sample is

482,1624,1707,1855,2135,2194,2207,2368,

2812,3061,3164,3784,4958,5383

Assume that the required average is 1000 hours and the testing time is 1050 hours.This

leads to the ratio t/δ0 = 1.05 From Table 1 the sampling plan for p∗ =0.90 is

(n = 14, c = 1, t/δ0 = 1.05).We accept the lot only if the number of failures before 1050

hours is less than or equal to 1.In the above sample there is only one failure at 482 hours

before termination t=1050 hours. Hence we accept the product. If one is interested in

knowing what value of δ/δ0 will ensure a producers risk less than or equal to 0.05 if a

sampling plan under discussion is adopted it can be obtained from p = G(t, δ) and then

using (4.3.5)and is presented in Table 6. The minimum values of n satisfying (4.3.3) are

obtained for the same combination of values of α, β and t/δ0 for various values of p∗ are

presented in Table 4.
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Table 4.4: Minimum sample size for the specified ratio t/δ0, confidence level p∗, ac-
ceptance number c, α = 2 and β = 2 using binomial approximation.

p∗ c t/δ0
0.9 1.05 1.4 1.65 1.9 2.15 2.4 2.65

0.75 0 8 5 3 2 2 2 2 1
1 15 10 6 5 4 3 3 3
2 23 15 9 7 6 5 5 4
3 29 20 11 9 8 7 6 6
4 36 24 14 11 9 8 8 7
5 43 29 16 13 11 10 9 9
6 49 33 19 15 13 12 11 10
7 56 37 22 17 15 13 12 11
8 63 42 24 19 17 15 14 13
9 69 46 27 21 18 16 15 14
10 75 50 29 23 20 18 17 16

0.90 0 13 8 5 4 3 3 2 2
1 22 14 8 6 5 5 4 4
2 30 20 11 9 7 6 6 5
3 38 25 14 11 9 8 7 7
4 45 30 17 13 11 10 9 8
5 53 35 20 16 13 12 11 10
6 60 40 23 18 15 13 12 11
7 67 45 25 20 17 15 14 13
8 74 49 28 22 19 17 15 14
9 81 54 31 24 21 18 17 16
10 88 59 33 26 23 20 18 17

p∗ c t/δ0
0.9 1.05 1.4 1.65 1.9 2.15 2.4 2.65

0.95 0 17 11 6 4 4 3 3 3
1 26 17 10 7 6 5 5 4
2 35 23 13 10 8 7 7 6
3 44 29 16 12 10 9 8 8
4 52 34 19 15 12 11 10 9
5 59 39 22 17 14 13 12 11
6 67 44 25 20 16 15 13 12
7 75 49 28 22 18 16 15 14
8 82 54 31 24 20 18 16 15
9 89 59 33 26 22 20 18 17
10 97 64 36 29 24 21 20 18

0.99 0 23 16 9 7 5 5 4 4
1 34 24 13 10 8 7 6 6
2 43 30 17 13 11 9 8 7
3 52 37 20 15 13 11 10 9
4 60 42 23 18 15 13 12 11
5 68 48 27 21 17 15 14 12
6 75 54 30 23 19 17 15 14
7 83 59 33 26 21 19 17 16
8 90 64 36 28 23 21 19 17
9 98 70 39 30 25 22 20 19
10 105 75 42 33 27 24 22 20
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Table 4.5: Minimum sample size for the specified ratio t/δ0, confidence level p∗, ac-
ceptance number c, α = 2 and β = 2 using Poisson approximation.

p∗ c t/δ0
0.9 1.05 1.4 1.65 1.9 2.15 2.4 2.65

0.75 0 8 6 4 3 3 3 2 2
1 15 11 7 6 5 4 4 4
2 22 16 10 8 7 6 6 6
3 28 21 12 10 9 8 8 7
4 35 25 15 12 11 10 9 9
5 41 30 18 15 13 12 11 10
6 47 34 20 17 15 13 12 12
7 53 39 23 19 16 15 14 13
8 59 43 26 21 18 17 15 15
9 65 48 28 23 20 18 17 16
10 71 52 31 25 22 20 18 18

0.9 0 13 10 6 5 4 4 4 4
1 22 16 10 8 7 6 6 6
2 30 22 13 11 9 8 8 7
3 37 27 16 13 11 10 10 9
4 44 32 19 16 14 12 12 11
5 51 37 22 18 16 14 13 13
6 58 42 25 20 18 16 15 14
7 65 47 28 23 20 18 17 16
8 72 52 31 25 22 20 18 17
9 78 57 34 27 24 22 20 19
10 85 62 36 30 26 23 22 21

0.95 0 17 12 7 6 5 5 5 4
1 26 19 12 9 8 8 7 7
2 35 25 15 12 11 10 9 9
3 43 31 19 15 13 12 11 11
4 50 37 22 18 15 14 13 12
5 58 42 25 20 18 16 15 14
6 65 47 28 23 20 18 17 16
7 72 52 31 25 22 20 19 18
8 79 58 34 28 24 22 20 19
9 86 63 37 30 26 24 22 21
10 93 68 40 33 28 26 24 23

0.99 0 26 19 11 9 8 7 7 7
1 37 27 16 13 11 10 10 9
2 46 34 20 16 14 13 12 11
3 55 40 24 19 17 15 14 14
4 64 46 28 22 20 18 17 16
5 68 52 31 25 22 20 19 18
6 75 58 34 28 24 22 21 20
7 83 64 38 31 27 24 23 21
8 90 69 41 33 29 26 25 23
9 98 75 44 36 31 28 26 25
10 105 80 47 39 34 30 28 27
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Table 4.6: Values of the operating characteristic function of the sampling plan(n, c, t
δ0

)

δ
δ0

p∗ n c t
δ0

1.6 1.8 2.0 2.2 2.4 2.6

0.75 23 2 0.90 0.9870 0.9988 0.9999 1.0000 1.0000 1.0000
15 2 1.05 0.9608 0.9928 0.9990 0.9999 1.0000 1.0000
9 2 1.40 0.8446 0.9389 0.9795 0.9941 0.9985 0.9997
7 2 1.65 0.7716 0.8855 0.9487 0.9793 0.9924 0.9975
6 2 1.90 0.6942 0.8210 0.9039 0.9522 0.9779 0.9905
5 2 2.15 0.6769 0.7952 0.8783 0.9317 0.9637 0.9817
5 2 2.40 0.5526 0.6853 0.7910 0.8682 0.9207 0.9544
4 2 2.65 0.6380 0.7446 0.8271 0.8873 0.9290 0.9567

0.9 30 2 0.9 0.9733 0.9973 0.9998 1.0000 1.0000 1.0000
20 2 1.05 0.9188 0.9838 0.9997 0.9977 1.0000 1.0000
11 2 1.4 0.7584 0.8975 0.9637 0.9891 0.9972 0.9994
9 2 1.65 0.6213 0.7911 0.8991 0.9568 0.9835 0.9943
7 2 1.9 0.5868 0.7440 0.8558 0.9256 0.9646 0.9844
6 2 2.15 0.5375 0.6871 0.8035 0.8847 0.9364 0.9669
6 2 2.4 0.3979 0.5477 0.6815 0.7888 0.8675 0.9210
5 2 2.65 0.4402 0.5741 0.6921 0.7875 0.8595 0.9107

δ
δ0

p∗ n c t
δ0

1.5 2 2.5 3 3.5 4

0.95 35 2 0.9 0.8987 0.9997 1.0000 1.0000 1.0000 1.0000
23 2 1.05 0.7878 0.9964 0.9999 1.0000 1.0000 1.0000
13 2 1.4 0.5443 0.9434 0.9977 0.9999 1.0000 1.0000
10 2 1.65 0.4375 0.8692 0.9865 0.9992 0.9999 1.0000
8 2 1.9 0.3289 0.7213 0.9279 0.9874 1.0000 1.0000
7 2 2.15 0.3289 0.7213 0.9279 0.9874 1.0000 1.0000
7 2 2.4 0.2084 0.5719 0.8462 0.9609 0.9926 0.9989
6 2 2.65 0.2237 0.5558 0.8170 0.9428 0.9859 0.9972

0.99 43 2 0.9 0.8408 0.9994 0.9999 1.0000 1.0000 1.0000
30 2 1.05 0.6531 0.9924 0.9999 1.0000 1.0000 1.0000
17 2 1.4 0.3524 0.8903 0.9949 0.9999 1.0000 1.0000
13 2 1.65 0.2492 0.7662 0.9714 0.9983 1.0000 1.0000
11 2 1.9 0.1703 0.6247 0.9164 0.9898 0.9992 1.0000
9 2 2.15 0.2311 0.5543 0.8621 0.9732 1.0000 1.0000
8 2 2.4 0.1302 0.46963 0.7896 0.9428 0.9887 0.9983
7 2 2.65 0.1286 0.4320 0.7388 0.9118 0.9771 0.9953
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Table 4.7: Minimum ratio of true δ to required δ0 for the acceptability of a lot with
producers risk of 0.05 forα = 2 andβ = 2

t
δ0

p∗ c 0.9 1.05 1.4 1.65 1.9 2.15 2.4 2.65
0.75 0 2.03 2.26 2.85 3.25 3.74 4.23 4.72 4.7

1 1.74 1.93 2.37 2.69 2.97 3.13 3.5 3.87
2 1.65 1.81 2.18 2.46 2.7 2.95 3.29 3.37
3 1.58 1.73 2.06 2.3 2.57 2.8 2.99 3.3
4 1.54 1.67 2 2.22 2.41 2.64 2.96 3.27
5 1.52 1.64 1.93 2.16 2.36 2.6 2.8 3.1
6 1.5 1.62 1.92 2.11 2.33 2.58 2.79 2.99
7 1.48 1.6 1.9 2.07 2.3 2.49 2.71 2.9
8 1.47 1.58 1.85 2.05 2.3 2.48 2.72 2.92
9 1.45 1.56 1.85 2.03 2.24 2.44 2.65 2.85
10 1.44 1.56 1.81 2.02 2.23 2.42 2.67 2.87

0.9 0 2.14 2.39 3.04 3.47 3.87 4.38 4.63 5.11
1 1.83 2.02 2.48 2.8 3.1 3.5 3.79 4.19
2 1.54 1.68 1.96 2.21 2.35 2.49 2.78 2.88
3 1.48 1.58 1.83 2 2.16 2.32 2.42 2.68
4 1.41 1.52 1.74 1.87 1.99 2.17 2.29 2.4
5 1.39 1.47 1.68 1.83 1.92 2.09 2.26 2.37
6 1.35 1.43 1.62 1.72 1.82 1.95 2.04 2.15
7 1.32 1.41 1.56 1.7 1.82 1.92 2.04 2.15
8 1.31 1.37 1.52 1.64 1.78 1.86 1.95 2.05
9 1.24 1.3 1.44 1.5 1.56 1.66 1.74 1.83
10 1.23 1.29 1.39 1.48 1.56 1.63 1.76 1.83

0.95 0 2.07 2.31 2.9 3.19 3.68 4.03 4.5 4.97
1 1.72 1.89 2.3 2.53 2.8 3.07 3.36 3.55
2 1.59 1.72 2.03 2.28 2.42 2.64 2.94 3.07
3 1.52 1.63 1.91 2.05 2.2 2.41 2.58 2.83
4 1.46 1.56 1.8 1.96 2.07 2.29 2.42 2.53
5 1.41 1.5 1.74 1.87 1.99 2.17 2.33 2.49
6 1.38 1.47 1.67 1.81 1.91 2.09 2.18 2.2
7 1.36 1.44 1.62 1.76 1.85 2 2.14 2.25
8 1.34 1.41 1.59 1.7 1.81 1.92 2.1 2.15
9 1.33 1.39 1.56 1.67 1.76 1.89 2.01 2.11
10 1.31 1.38 1.53 1.65 1.73 1.83 1.98 2.03

0.99 0 2.11 2.37 3.01 3.41 3.84 4.34 4.64 5.13
1 1.8 1.97 2.38 2.68 2.98 3.3 3.54 3.91
2 1.67 1.81 2.16 2.39 2.67 2.89 3.05 3.21
3 1.56 1.7 2 2.19 2.42 2.58 2.78 2.98
4 1.52 1.62 1.87 2.1 2.25 2.44 2.62 2.83
5 1.48 1.58 1.83 2 2.16 2.3 2.52 2.58
6 1.44 1.54 1.78 1.91 2.07 2.21 2.34 2.49
7 1.41 1.51 1.72 1.87 1.99 2.13 2.3 2.45
8 1.39 1.48 1.69 1.8 1.92 2.09 2.22 2.33
9 1.36 1.46 1.64 1.76 1.88 2.01 2.11 2.25
10 1.35 1.44 1.62 1.73 1.85 1.95 2.1 2.18
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Figure 4.1: OC curve for different samples and for p∗ = 0.75 and c=2

Figure 4.2: minimum ratio of δ/δ0 with producers risk of 0.05 for c=1,2 and 3.
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Figure 4.3: minimum ratio of δ/δ0 with producers risk of 0.05 for c=4,5 and 6.

Figure 4.4: minimum ratio of δ/δ0 with producers risk of 0.05 for c=7 to 10.
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4.4 Application in time series modeling

Now we discuss various Auto Regressive models of order 1 with Marshall-Olkin Extended

Fréchet distribution as marginals, namely MIN AR(1) model I and II and MAX-MIN AR(1)

model I and II and explore some properties.

4.4.1 MIN AR(1) model-I with Marshall-Olkin Extended Fréchet marginal distribu-

tion

Consider an AR(1) structure given by

Xn =

 εn with probability p

min(Xn−1, εn) with probability 1− p
(4.4.1)

where {εn} is a sequence of independent and identically distributed random variables

independent of {Xn} and p ∈ (0, 1). Then the process is stationary Markovian with

Marshall-Olkin distribution as marginal.

Theorem 4.4.1. In an AR(1) process with structure (4.4.1), {Xn} is stationary Marko-

vian with Marshall-Olkin Fréchet distribution with parameters p, δ and β if and only

if {εn} is distributed as Fréchet distribution with parameters δ and β.

Proof: Sufficiency: Let εn follows Fréchet distribution with parameters δ and β. From

(4.4.1) it follows that

FXn(x) = pF εn(x) + (1− p)FXn−1(x)F εn(x). (4.4.2)

Under stationarity equilibrium, this gives

FX(x) =
pF ε(x)

1−(1− p)F ε(x)
,

which is of the Marshall-Olkin form. Necessary: Let Xn follows Marshall-Olkin Extended
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Fréchet distribution with parameters p, δ and β. From (4.4.2) under stationarity, we have

F ε(x) =
FX(x)

p+ (1− p)FX(x)
.

On simplification we get F ε(x) = 1 − e−( δ
x

)β , which is the survival function of Fréchet

distribution with parameters δ and β. Let us first consider the joint survival function of

random variables Xn+k and Xn, k ≥ 1. We have

Sk(x, y) ≡ P (Xn+k > x,Xn > y)

= pF ε(x)FX(y) + (1− p)F ε(x)Sk−1(x, y)

= pF ε(x)FX(y)
k−1∑
j=0

(1− p)jF j

ε(x) + (1− p)kF k

ε(x)S0(x, y)

= pF ε(x)FX(y)
1− (1− p)kF k

ε(x)

1− (1− p)F ε(x)
+ (1− p)kF k

ε(x)S0(x, y),

where

S0(x, y) = P (Xn > max(x, y)) =

 FX(x), x ≥ y,

FX(y), x < y.

Letting k →∞, we obtain

S∞(x, y) =
pF ε(x)FX(y)

1− (1− p)F ε(x)
,

i.e. we can see the joint survival function of random variables Xn+k and Xn can be repre-

sented as a product of two survival function of random variables with parameters p, δ and

β. Now we will show that the joint survival function of random variables Xn+k and Xn is

not a continuous function, i.e. we will show that the probability P (Xn+k = Xn) is positive.
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We have

P (Xn+k = Xn) = (1− p)P (Xn+k−1 = Xn, Xn+k−1 < εn+k)

= (1− p)2P (Xn+k−2 = Xn, Xn+k−2 < εn+k−1, Xn+k−2 < εn+k)

= (1− p)kP (Xn < min(εn+1, . . . , εn+k−1, εn+k)). (4.4.3)

Now, since random variables εn+i, i = 1, 2, . . . , k, have the survival function F ε(x), it fol-

lows that a random variable min(εn+1, . . . , εn+k−1) has the survival function F
k

ε(x). Using

this, we obtain

P (Xn < min(εn+i, i = 1, 2, . . . , k)) =

∫ ∞
0

F
k

ε(x)fX(x)dx

= p

∫ ∞
0

F
k

ε(x)
fε(x)

(1− (1− p)F ε(x))2
dx

= 1− pk

k + 1
2F1(1, 1 + k; 2 + k; 1− p).(4.4.4)

Finally, replacing (4.4.4) in (4.4.3), we obtain that the probability P (Xn+k = Xn) is positive.

Now we will derive the probability of the event {Xn+k > Xn}, k ≥ 1. We have

P (Xn+k > Xn) = pP (εn+k > Xn) + (1− p)P (min(Xn+k−1, εn+k) > Xn)

= p

k−1∑
j=0

(1− p)jP (min(εn+k−j, . . . , εn+k) > Xn),

since the probability of the event {min(Xn, εn+k−j, . . . , εn+k) > Xn} is 0. Using (4.4.4)

we obtain

P (Xn+k > Xn) = p

k−1∑
j=0

(1− p)j
(

1− p(j + 1)

j + 2
2F1(1, j + 2; j + 3; 1− p)

)
.
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For k = 1 we have

P (Xn+1 > Xn) = p
(

1− p

2
2F1(1, 2; 3; 1− p)

)
=
p(1− p+ p log p)

(1− p)2
.

This probability is an increasing function on p. Also, we can see that it takes values from

(0, 1
2
). Thus we can conclude that as p increases that we can observe more down runs of

the process {Xn}.

4.4.2 MIN AR(1) model-II with Marshall-Olkin Fréchet marginal distribution

Now we discuss a more general structure which allows probabilistic selection of process

values, innovations and combinations of both. Consider an AR(1) structure given by

Xn =


Xn−1 with probability p1

εn with probability p2

min(Xn−1, εn) with probability 1− p1 − p2

(4.4.5)

where p1, p2, p3 > 0, p1 + p2 < 1 and {εn} is a sequence of independent and identi-

cally distributed random variables independent of {Xn}. Then the process is stationary

Markovian with Marshall-Olkin distribution as marginal.

Theorem 4.4.2. In an AR(1) process with structure (4.4.5), {Xn} is stationary Marko-

vian with Marshall-Olkin Extended Fréchet distribution with parameters q, δ, β if and

only if {εn} is distributed as Fréchet distribution with parameters δ and β, where

q = p2
1−p1 .

Proof: Sufficiency: Let εn follows Fréchet distribution with parameters δ and β. From

(4.4.5) it follows that

FXn(x) = p1FXn−1(x) + p2F εn(x) + (1− p1 − p2)FXn−1(x)F εn(x). (4.4.6)

102



CHAPTER 4. APPLICATIONS OF MARSHALL-OLKIN EXTENDED FRÉCHET DISTRIBUTION

Under stationarity equilibrium, this gives

FX(x) =
qF ε(x)

1−(1− q)F ε(x)
, where q =

p2

1− p1

,

which is of the Marshall–Olkin form.

Necessary: Let Xn follows Marshall-Olkin Fréchet distribution with parameters q, δ and β.

From (4.4.6) under stationarity, we have that

F ε(x) =
(1− p1)FX(x)

p2 + (1− p1 − p2)FX(x)
.

Now, using the fact thatXn has the Marshall-Olkin Extended Fréchet distribution with para-

meters q, δ and β,we get that

F ε(x) = 1− e−( δ
x

)β ,

which is the survival function of Fréchet distribution with parameters δ and β. Let us first

consider the joint survival function of random variables Xn+k and Xn, k ≥ 1. We have

Sk(x, y) = p2F ε(x)FX(y) + [p1 + (1− p1 − p2)F ε(x)]Sk−1(x, y)

= p2F ε(x)FX(y)
k−1∑
j=0

[p1 + (1− p1 − p2)F ε(x)]j

+[p1 + (1− p1 − p2)F ε(x)]kS0(x, y)

= p2F ε(x)FX(y)
1− [p1 + (1− p1 − p2)F ε(x)]k

1− p1 − (1− p1 − p2)F ε(x)

+[p1 + (1− p1 − p2)F ε(x)]kS0(x, y).

As in the case when p1 = 0, letting k → ∞, we obtain that the joint survival function of

random variables Xn+k and Xn can be represented as a product of two survival function

of random variables with parameters q, δ and β. Let us consider now the probability

P (Xn+k = Xn). To simplify the derivations, we will denote by Aji1,...,ir the event
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{Xn+j = Xn, Xn+j < min(εn+i1 , . . . , εn+ir)}. We have

P (Xn+k = Xn) = p1P (Xn+k−1 = Xn) + (1− p1 − p2)P (Ak−1
k )

= p2
1P (Xn+k−2 = Xn) + p1(1− p1 − p2)P (Ak−2

k−1)

+p1(1− p1 − p2)P (Ak−2
k ) + (1− p1 − p2)2P (Ak−2

k−1,k)

= pk1 + pk−1
1 (1− p1 − p2)

k∑
i1=1

P (A0
i1

)

+pk−2
1 (1− p1 − p2)2

∑
i1<i2

P (A0
i1,i2

) + . . .

+p1(1− p1 − p2)k−1
∑

i1<···<ik−1

P (A0
i1,...,ik−1

)

+(1− p1 − p2)kP (A0
i1,...,ik

). (4.4.7)

From (4.4.4) we have

P (A0
i1,...,ir

) = 1− qr

1 + r
2F1(1, 1 + r; 2 + r; 1− q).

Replacing this in (4.4.7), we obtain that the probability of the event {Xn+k = Xn} is

P (Xn+k = Xn) =
k∑
j=0

pj1(1− p1 − p2)k−j
(
k

j

)[
1− qj

1 + j
2F1(1, 1 + j; 2 + j; 1− q)

]
.

Now we will derive the probability of the event {Xn+1 > Xn}. From the definition of the

process and (4.4.4), we have

P (Xn+1 > Xn) = p2P (εn+1 > Xn) =
p2(1− q + q log q)

(1− q)2
.
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4.4.3 MAX-MIN AR(1) model-I with Marshall-Olkin Extended Fréchet marginal dis-

tribution

Consider the AR(1) structure given by

Xn =


max(Xn−1, εn) with probability p1

min(Xn−1, εn) with probability p2

Xn−1 with probability 1− p1 − p2,

(4.4.8)

where 0 < p1, p2 < 1, p2 < p1, p1 + p2 < 1 and {εn} is a sequence of i.i.d. random

variables independently distributed of Xn. Then the process is stationary Markovian with

Marshall-Olkin distribution as marginal.

Theorem 4.4.3. In AR(1) Max-Min process with structure (4.4.8), {Xn} is a station-

ary Markovian AR(1) Max-Min process with Marshall-Olkin Fréchet distribution with

parameters q, δ and β if and only if {εn} follows Fréchet distribution with parameters

δ and β, where q = p1
p2

.

Proof: Sufficiency: Let εn follows Fréchet distribution with parameters δ and β. From

structure (4.4.8), we have

FXn(x) =p1[1− (1− FXn−1(x))(1− F εn(x))] + p2FXn−1(x)F εn(x)

+ (1− p1 − p2)FXn−1(x).
(4.4.9)

Under stationary equilibrium,

FXn(x) =
qF ε(x)

1− (1− q)F ε(x)
,

where q = p1/p2 and it is in the Marshall-Olkin form.

Necessary: Let Xn follows Marshall-Olkin Extended Fréchet distribution with parameters
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q, δ and β. Then from (4.4.9) under stationarity

F ε(x) =
p2FXn(x)

p1 + (p2 − p1)FXn(x)
.

On simplification we get

F ε(x) = 1− e−( δ
x

)β

which is the survival function of Fréchet distribution with parameters δ and β. In many

situations of practical interest is the probability of the event {Xn+1 > Xn}. After some

calculations, we can show that

P (Xn+1 > Xn) = p1P (εn+1 > Xn) =
p1(1− q + q log q)

(1− q)2
,

4.4.4 MAX-MIN AR(1) model-II with Marshall-Olkin Extended Fréchet marginal dis-

tribution

Finally we consider more general Max-Min process which includes maximum, minimum as

well as the innovations and the process. The AR(1) structure is given by

Xn =


max(Xn−1, εn) with probability p1

min(Xn−1, εn) with probability p2

εn with probability p3

Xn−1 with probability1− p1 − p2 − p3,

(4.4.10)

where 0 < p1, p2, p3 < 1, p1 + p2 + p3 < 1 and {εn} is a sequence of i.i.d. random

variables independently distributed of Xn. Then the process is stationary Markovian with

Marshall-Olkin distribution as marginal.

Theorem 4.4.4. AR(1) Max-Min process {Xn} with structure (4.4.10) is a station-
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ary Markovian AR(1) Max-Min process with Marshall-Olkin Fréchet distribution with

parameters q, δ and β if and only if {εn} follows Fréchet distribution with parameters

δ and β, where q = p1+p3
p2+p3

.

Proof: Sufficiency: Let εn follows Fréchet distribution with parameters δ and β. From

structure (4.4.10), we have

FXn(x) =p1[1− (1− FXn−1(x))(1− F εn(x))] + p2FXn−1(x)F εn(x)

+ p3F εn(x) + (1− p1 − p2 − p3)FXn−1(x).
(4.4.11)

Under stationary equilibrium, we obtain

FXn(x) =
qF ε(x)

1− (1− q)F ε(x)
, q =

p1 + p3

p2 + p3

which is of the Marshall-Olkin form.

Necessary: Let Xn follows Marshall-Olkin ExtendedFréchet distribution with parameters q,

δ and β. Then from(4.4.11) under stationarity, we have

F ε(x) =
(p2 + p3)FX(x)

(p1 + p3) + (p2 − p1)FX(x)
.

On simplification, we get

F ε(x) = 1− e−( δ
x

)β ,

which is the survival function of Fréchet distribution with parameters δ and β.

Remark

The above model can describe the response to treatment of a patient suffering from B.P.

In normal situation Xn is same as Xn−1. For an acute patient always the innovation εn

is important. In some cases we have to keep the minimum as well as maximum at a

particular level.
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4.4.5 Sample path behavior

Figure 4.5 - 4.8 describe the sample path properties of the four AR(1) models developed

above

Figure 4.5: Sample path for AR(1) Minification model I for various values of p = 0.9, 0.8, 0.6
and δ = 20 and β = 1.2

Figure 4.6: Sample path for AR(1) Minification model II for various combinations of
(p1, p2) = (0.4, 0.2), (0.2, 0.4), (0.2, 0.2) and δ = 25 and β = 2

Conclusion:The continuous improvement and review of acceptance sampling plan is

important to improve the quality of the products and to ensure customer satisfaction.
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Figure 4.7: Sample path for AR(1) Minmax model I for various combinations of (p1, p2) =
(0.2, 0.3), (0.3, 0.2), (0.3, 0.3) and δ = 15 and β = 2

Figure 4.8: Sample path for AR(1) Minmax model II for various combinations of (p1, p2, p3) =
(0.5, 0.2, 0.1), (0.3, 0.2, 0.3), (0.4, 0.2, 0.2) and δ = 25 and β = 1.2
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CHAPTER 5

Marshall-Olkin Exponentiated Generalized

Exponential Distribution and its

Applications

5.1 Introduction

The exponential distribution is one of the most significant and widely used distribu-

tions in statistical literature and it possesses several important statistical properties. It is

the most commonly used distribution in reliability studies, eventhough its hazard rate func-

tion is constant. The two-parameter generalized exponential distribution has been studied

extensively by Gupta and Kundu (1999, 2001, 2002, 2003, 2004), Raqab (2002), Raqab

and Ahsanullah (2001). The generalized exponential distribution is a sub-model of the ex-

ponentiated Weibull distribution introduced by Mudholkar and Srivastava(1993) and later
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studied by Mudholkar, Srivastava and Freimer (1995) and Mudholkar and Hutson (1996).

The generalized exponential distribution is also known as exponentiated exponential and

it has two parameters (scale and shape) similar to the Weibull or gamma family. Alice

and Jose(2005) discusses Marshall-Olkin semi-Weibull minification processes and Jose

et al.(2010) also proposed Marshall-Olkin q-Weibull distribution and maxmin processes.

Jayakumar and Thomas(2008) developed a generalization of Marshall-Olkin distribution

and discussed its application to Burr Type XII distribution. Jose et al.(2011) discussed

Marshall-Olkin bivariate Weibull distributions and applications. Barriga, Louzada and Can-

cho (2011) deal with the Complementary Exponential Power Lifetime model which is ob-

tained by exponentiation of the Exponential Power distribution proposed by Smith and

Bain (1975). Krishna et al.(2013 a,b) introduced Marshall-Olkin Fréchet distribution and

discussed its applications. Bakouch et al.(2012) deal with the extension of the Lindley dis-

tribution. Nadarajah (2005) discussed the exponentiated Gumbel distribution. Shirke and

Kakade (2006) dicussed exponentiated log-normal and Nadarajah and Gupta (2007) the

exponentiated gamma distributions.

In this chapter we consider Marshall-Olkin Exponentiated Generalized Exponential

Distribution and its Applications. Exponentiated generalized Exponential distribution and

its properties are considered in detail. A new distribution called Marshall-Olkin Exponen-

tiated Generalized Exponential Distribution is introduced and its properties are discussed.

The quantiles and order statistics are considered. The maximum likelihood estimates are

obtained and applied to a real data set on carbon fibers. Reliability of a system following

Marshall-Olkin Exponentiated generalized Exponential distribution under stress-strength

model is estimated and its validity is measured in terms of average bias and average

mean square error calculated from the simulated N estimates. The average length of the

95% asymptotic confidence intervals and coverage probability for the estimates obtained

by simulation are evaluated.
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5.2 Exponentiated Generalized Exponential Distribution

The cumulative distribution function(c.d.f.) of the exponential distribution is G(x) = 1 −
exp(−λx) where λ > 0. Then define the Exponentiated Generalized Exponential (EGE)

with cumulative distribution given by

F (x) = [1− exp(−αλx)]β (5.2.1)

where x > 0,α > 0, β > 0, λ > 0 and the corresponding density function can be

obtained from (1.3.4) as

f(x) = αβλ exp(−λαx)[1− exp(−αλx)]β−1

where x > 0,α > 0, β > 0, λ > 0. It is denoted as EGE(α, β, λ).

The survival function and Hazard rate function of the EGE distribution is given by

F̄ (x) = 1− [1− exp(−αλx)]β (5.2.2)

r(x) =
αβλ exp(−αλx)[1− exp(−αλx)]β−1

1− [1− exp(−αλx)]β

Figure 5.1 and Figure 5.2 shows the pdf and hazard function of EGE distribution for

different values of parameters.

The pth quantile function xp of the EGE distribution, the inverse of the distribution

function F (xp) = p is given by
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Figure 5.1: The p.d.f. of EGE distribution for different values of parameters

Figure 5.2: Hazard rate function of EGE distribution for different values of parameters
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xp =
−1

αλ
log(1− p

1
β )

5.3 Marshall-Olkin Exponentiated Generalized Exponential Distribu-

tion

Consider the survival function of exponentiated generalized exponential distribution

F̄ (x) = 1 − [1 − exp(−αλx)]β. In this section using Marshall-Olkin techniques, we intro-

duce Marshall-Olkin Exponentiated Generalized Exponential (MOEGE) Distribution. The

survival function of MOEGE distribution is given by

Ḡ(x) =
θ − θ[1− exp(−αλx)]β

θ + (1− θ)[1− exp(−αλx)]β
(5.3.1)

Then the corresponding probability density function is given by

g(x) =
θαβλ exp(−αλx)[1− exp(−αλx)]β−1

[1− (1− θ)(1− [1− exp(−αλx)]β)]2
(5.3.2)

α > 0, β > 0, λ > 0, θ > 0. It is denoted as MOEGE(α, β, λ, θ).

1. When θ = 1 the above density becomes exponentiated generalized exponential, and

when θ = α = 1 it becomes Generalized Exponential distribution.

2. When θ = α = β = 1 the distribution becomes exponential distribution and when

α = β = 1 it becomes Marshall-Olkin Exponential distribution.

The cumulative distribution function is given by

G(x) =
[1− exp(−αλx)]β

θ + (1− θ)[1− exp(−αλx)]β
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Figure 5.3: The p.d.f. of MOEGE distribution for different values of parameters

and the hazard rate function is given by

h(x) =
αβλ exp(−αλx)[1− exp(−αλx)]β−1

[1− (1− exp(−αλx))β] (1− (1− θ)[1− (1− exp(−αλx))β])

Figure 5.3 and Figure 5.4 shows the pdf and hazard function of different combinations

of parameter values.

5.4 Quantiles and Order statistics

The pth quantile function of the distribution, the inverse of the distribution function F (xp) =

p, is given by

xp =
−1

αλ
log

(
1−

[
pθ

1− p(1− θ)

]1/β
)
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Figure 5.4: Hazard rate function of MOEGE distribution for different values of param-
eters

Let X1, X2, ..., Xn be a random sample taken from the MOEGE distribution and

X1:n, X2:n, ..., Xn:n be the corresponding order statistics. The survival function of

MOEGE distribution is given by (5.3.1). Then the c.d.f. of the first order statistic X1:n

is given by

G1:n(x) = 1− (Ḡ(x))n

= 1−
[

θ − θ[1− exp(−αλx)]β

θ + (1− θ)[1− exp(−αλx)]β

]n

The c.d.f. of the nth order statistic Xn:nis given by

Gn:n(x) = [1− Ḡ(x)]n

=
[1− exp(−αλx)]nβ

[θ + (1− θ)[1− exp(−αλx)]β]n
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The probability density function gi:n(x) of the ith order statistics Xi:n is given by

gi:n(x) =
n!

(i− 1)!(n− 1)!

θαβλ exp(−αλx)[1− exp(−αλx)]iβ−1

[1− (1− θ)(1− [1− exp(−αλx)]β)]2[
θ − θ[1− exp(−αλx)]β

]n−i
[θ + (1− θ)[1− exp(−αλx)]β]n−1

5.5 Estimation of Parameters

In this section we consider maximum likelihood estimation for a given random sample

(x1, x2, ..., xn). Then the log likelihood function is given by

logL(α, β, λ, θ) = n(logθ + logα + logβ + logλ) + αλ
n∑
i=1

xi +

(β − 1)
n∑
i=1

log(1− exp(−αλxi))−

2
n∑
i=1

log
[
1− (1− θ)(1− [1− exp(−αλxi)]β)

]

The partial derivative of the log likelihood functions with respect to the parameters are

∂ logL

∂α
=

n

α
+ λ

n∑
i=1

xi + λ(β − 1)
n∑
i=1

xi exp(−αλxi)
1− exp(−αλxi)

−

2(1− θ)βλ
n∑
i=1

xi exp(−αλxi)[1− exp(−αλxi)]β−1

1− (1− θ) [1− [1− exp(−αλxi)]β]

∂ logL

∂β
=

n

β
+

n∑
i=1

log[1− exp(−αλxi)]−

2(1− θ)
n∑
i=1

[1− exp(−αλxi)]βlog[1− exp(−αλxi)]
1− (1− θ) [1− [1− exp(−αλxi)]β]
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∂ logL

∂λ
=

n

λ
+ α

n∑
i=1

xi + (β − 1)α
n∑
i=1

xi exp(−αλxi)
1− exp(−αλxi)

−

2αβ(1− θ)
n∑
i=1

xi exp(−αλxi)[1− exp(−αλxi)]β−1

1− (1− θ) [1− [1− exp(−αλxi)]β]

∂ logL

∂θ
=

n

θ
− 2

n∑
i=1

(1− [1− exp(−αλxi)]β)

1− (1− θ) [1− [1− exp(−αλxi)]β]

The maximum likelihood estimates can be obtained by solving the normal equations
∂ logL
∂α

= 0,∂ logL
∂β

= 0,∂ logL
∂λ

= 0,∂ logL
∂θ

= 0.The equations can be solved using nlm package

in R software.

5.5.1 Data Analysis

In this section we present the analysis of one real data set. It is a strength data considered

by Badar and Priest(2011). The data represent the strength measured in GPA, for single

carbon fibers. Single fibers were tested under tension at gauge lengths of 1, 10, 20 and 50

mm. We are considering the single fibers data set of 10 mm in gauge lengths with sample

size 63. The data are presented below.

1.901, 2.132, 2.203, 2.228, 2.257, 2.350, 2.361, 2.396, 2.397, 2.445, 2.454, 2.474,

2.518, 2.522, 2.525, 2.532, 2.575, 2.614, 2.616, 2.618, 2.624, 2.659, 2.675, 2.738, 2.740,

2.856, 2.917, 2.928, 2.937, 2.937, 2.977, 2.996, 3.030, 3.125, 3.139, 3.145, 3.220, 3.223,

3.235, 3.243, 3.264, 3.272, 3.294, 3.332, 3.346, 3.377, 3.408, 3.435, 3.493, 3.501, 3.537,

3.554, 3.562, 3.628, 3.852, 3.871, 3.886, 3.971, 4.024, 4.027, 4.225, 4.395, 5.020.

Exponentiated Generalized Exponential with α, β and λ, Exponential with λ and

Marshall-Olkin Exponentiated Generalized Exponential distribution with parameters α, β, λ

and θ are fitted to the data. Estimates of the parameters are shown in Table 5.1. From
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Table 5.1: Summary of fitting for the MOEGE, EGE and Exponential distribution.

Model Parameter Estimates -Log-likelihood K-S statistic

MOEGE α 0.7780 74.9965 0.4605
β 0.7975
λ 0.1670
θ 0.7895

EGE α 0.9180 120.0223 0.8253
β 0.8850
λ 0.0119

Exponential λ 0.3742 77.3343 0.5240

Table 5.1, it is seen that the K-S statistic for the MOEGE distribution is 0.4605 which is less

than that for the EGE and Exponential distribution. Similar is the case with log likelihood

values. Hence we conclude that MOEGE distribution is a better model for the data set.

5.6 Stress-Strength Analysis

The stress-strength reliability analysis can be described as an assessment of reliability of a

system in terms of random variables X and Y, where X represents stress and Y represents

the strength. If the stress exceeds strength the system would fail and the system will

function if strength exceeds stress. The stress-strength reliability can be defined as R =

P (X < Y ). Gupta et al.(2010) obtained various results on the MO family in the context of

reliability modeling and survival analysis. We have,

P (X < Y ) =

∫ ∞
−∞

P (Y > X/X = x)gX(x)dx

=

∫ ∞
0

θ − θ[1− exp(−αλx)]β

θ + (1− θ)[1− exp(−αλx)]β
θαβ exp(−αλx)[1− exp(−αλx)]β−1

[1− (1− θ)(1− [1− exp(−αλx)]β)]2
dx

=
α1

α2

(α1

α2
− 1)2

[
− log

α1

α2

+
α1

α2

− 1

]
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Consider the pdf of Marshall-Olkin Exponentiated Generalized Exponential distribution

given by

g(x, α, β, λ, θ) =
θαβ exp(−αλx)[1− exp(−αλx)]β−1

[1− (1− θ)(1− [1− exp(−αλx)]β)]2

α > 0, β > 0, λ > 0, θ > 0.

Let (x1, x2, ..., xm) and (y1, y2, ..., yn) be two independent random samples of sizes

m and n from Marshall-Olkin Exponentiated Generalized Exponential distribution with tilt

parameters α1 and α2 respectively, and common unknown parameters β, λ and θ. The log

likelihood function is given by

L(α1, α2, β, λ, θ) =
m∑
i=1

log g(xi;α1, β, λ, θ) +
n∑
j=1

log g(yj;α2, β, λ, θ)

The maximum likelihood estimates of the unknown parameters α1, α2 are the solutions

of non linear equations ∂L
∂α1

= 0 and ∂L
∂α2

= 0 respectively.

The elements of Information matrix are

I11 = −E(
∂2L

∂α2
1

) =
m

3α2
1

I22 = −E(
∂2L

∂α2
2

) =
n

3α2
2

I12 = I21 = −E(
∂2L

∂α1α2

) = 0

By the property of m.l.e for m→∞, n→∞ , we have

(
√
m(α̂1 − α1),

√
n(α̂2 − α2))

d→ N2(0, diag{a−1
11 , a

−1
22 })
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where a11 = lim
m,n→∞

1

m
I11 =

1

3α2
1

and a22 = lim
m,n→∞

1

m
I22 =

1

3α2
2

.

The 95% confidence interval for R is given by

R̂± 1.96α̂1b1(α̂1, α̂2)

√
3

m
+

3

n

where R̂ = R(α̂1, α̂2) is the estimator of R and

b1(α1, α2) =
∂R

∂α1

=
α2

(α1 − α2)3

[
−2(α1 − α2) + (α1 + α2) ln

α1

α2

]

5.6.1 Simulation Study

We generate N = 10000 sets of X samples and Y samples from Marshall-Olkin Expo-

nentiated Generalized Exponential distribution with parameters α1, β, λ, θ and α2, β, λ, θ

respectively. The combinations of samples of sizes m = 20, 25, 30 and n = 20, 25, 30 are

considered. The estimates of α1 and α2 are obtained from each sample to obtain R̂. The

validity of the estimate of R is discussed by the measures

1. Average bias of the simulated N estimates of R:

1

N

N∑
i=1

(R̂−R)

2. Average mean square error of the simulated N estimates of R:

1

N

N∑
i=1

(R̂−R)2

3. Average length of the asymptotic 95% confidence intervals of R:

1

N

N∑
i=1

2(1.96)α̂1ib1i(α̂α1i, α̂α2i)

√
3

m
+

3

n
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4. The coverage probability of the N simulated confidence intervals given by the pro-

portion of such interval that include the parameter R.

The average bias and average mean square error of the simulated estimates of R for

various combination values are given in Table 2.2. The average confidence length and

coverage probability of the simulated estimates of R for various combination values are

given in Table 2.3.

5.7 Conclusion

In this chapter we have introduced Marshall-Olkin Exponentiated Generalized Exponential

distribution and studied its properties. We analyze a real data set and compare MOEGE

distribution with the exponentiated generalized exponential distribution and exponential

distribution. We conclude that the MOEGE distribution is a better fit. The results of the

data analysis are summarized in Table 5.1. The stress-strength reliability analysis is also

done. In Table 5.2, we get the average bias and average mean square error of the esti-

mates obtained in the simulation study. Also in Table 5.3, we get the average confidence

length and coverage probability of the simulated estimates of R for various combinations of

parameter values. The MATLAB programme developed for computation is given in section

5.8, as Appendix.

124



CHAPTER 5. MARSHALL-OLKIN EXPONENTIATED GENERALIZED EXPONENTIAL DISTRIBUTION AND ITS APPLICATIONS

Table 5.2: Average bias and average MSE of the simulated estimates of R for β =
4, λ = 3 and θ = 2

(α1, α2)
Average bias (b̄) Average Mean Square Error (AMSE)

(m,n) (0.8,0.9) (1.2,1.3) (1.5,1.9) (2,1.5) (0.8,0.9) (1.2,1.3) (1.5,1.9) (2,1.5)

(20,20) 0.0398 0.0265 0.0781 -0.0950 0.0041 0.0033 0.0087 0.0116
(20,25) 0.0391 0.0265 0.0783 -0.0948 0.0041 0.0032 0.0086 0.0114
(20,30) 0.0389 0.0264 0.0781 -0.0940 0.0041 0.0032 0.0086 0.0114

(25,20) 0.0411 0.0281 0.0807 -0.0938 0.0040 0.0031 0.0088 0.0110
(25,25) 0.0416 0.0292 0.0803 -0.0929 0.0040 0.0032 0.0087 0.0109
(25,30) 0.0413 0.0294 0.0809 -0.0921 0.0041 0.0032 0.0088 0.0107

(30,20) 0.0433 0.0302 0.0823 -0.0910 0.0040 0.0030 0.0089 0.0104
(30,25) 0.0434 0.0304 0.0822 -0.0912 0.0040 0.0031 0.0089 0.0104
(30,30) 0.0426 0.0298 0.0821 -0.0913 0.0040 0.0030 0.0089 0.0104

5.8 Appendix

s1=0;

s2=0;

c=0;

inter=0;

for i=1:10000;

a1=1.2;

bet=4;

lam=3;

th=2;

m=30;

n=25;

u1=unifrnd(0,1,m,1);

x=(a1.*lam).^(-1).*log(1-(u1.*th./(1-u1+u1.*th)).^(1./bet));

[A1hat]=mle(x,’log(th.*a1.*bet.*lam.*exp(-lam.*a1.*x).*(1-exp(-a1.*lam.*x).^(bet-1)./

(1-(1-th).*(1-(1-exp(-a1.*lam.*x).^bet)).^2)’,0.01);

val=A1hat;

subs=[1;2];

k=accumarray(subs,val);

p1=k(1);

q1=k(2);
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Table 5.3: Average confidence length and coverage probability of the simulated 95%
percentage confidence intervals of R for for β = 4, λ = 3 and θ = 2

(α1, α2)
Average Confidence Length Coverage Probability

(m,n) (0.8,0.9) (1.2,1.3) (1.5,1.9) (2,1.5) (0.8,0.9) (1.2,1.3) (1.5,1.9) (2,1.5)

(20,20) 0.3540 0.3542 0.3526 0.3512 0.9942 0.9964 0.9645 0.9327
(20,25) 0.3359 0.3362 0.3346 0.3338 0.9903 0.9946 0.9520 0.9135
(20,30) 0.3260 0.3235 0.3220 0.3209 0.9874 0.9942 0.9436 0.8940

(25,20) 0.3361 0.3363 0.3345 0.3341 0.9924 0.9963 0.9508 0.9235
(25,25) 0.3169 0.3171 0.3155 0.3151 0.9901 0.9939 0.9360 0.8996
(25,30) 0.3033 0.3035 0.3020 0.3018 0.9825 0.9909 0.9164 0.8984

(30,20) 0.3235 0.3238 0.3135 0.3220 0.9910 0.9958 0.9397 0.9219
(30,25) 0.3035 0.3037 0.3021 0.3025 0.9872 0.9927 0.9198 0.9121
(30,30) 0.2893 0.2896 0.2880 0.2880 0.9805 0.9894 0.8956 0.9485

if (abs(p1-a1)<abs(q1-a1))

A1hat=p1;

else

A1hat=q1;

end

%[...]= mle(data,’logpdf’,logpdf,’logf’,logf,’start’,start,...)

a2=1.3;

u2=unifrnd(0,1,n,1);

y=(a2.*lam).^(-1).*log(1-(u2.*th./(1-u2+u2.*th)).^(1./bet));

[A2hat]=mle(y,’log(th.*a2.*bet.*lam.*exp(-lam.*a2.*x).*(1-exp(-a2.*lam.*x).^(bet-1)./

(1-(1-th).*(1-(1-exp(-a2.*lam.*x).^bet)).^2)’,0.01);

val=A2hat;

subs=[1;2];

R=accumarray(subs,val);

p2=R(1);

q2=R(2);

if (abs(p2-a2)<abs(q2-a2))

A2hat=p2;

else

A2hat=q2;

end

a=a1/a2;
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r1=(a/(a-1)^2)*(-log(a)+a-1);

A=A1hat/A2hat;

R1=(A/(A-1)^2)*(-log(A)+A-1);

t1=R1-r1;

t2=t1*t1;

s1=s1+t1;

s2=s2+t2;

b1=(A2hat/(A1hat-A2hat)^3)*(-2*(A1hat-A2hat)+ (A1hat-A2hat)*log(A1hat/A2hat));

inter=inter+2*1.96*A1hat*b1*sqrt((3/m)+(3/n));

if((r1>R1-1.96*A1hat*b1*sqrt((3/m)+(3/n))&& (r1>R1+1.96*A1hat*b1*sqrt((3/m)+(3/n)))));

c=c+1;

end;

end;

AB= s1/10000

MES= s2/10000

ACI= inter/10000

prop= c/10000
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CHAPTER 6

Marshall-Olkin Exponentiated Generalized

Fréchet Distribution and its Applications

6.1 Introduction

In 1927 a French mathematician Maurice Fréchet has introduced Fréchet distribution. It

is a special case of generalized extreme value distribution and is also known as type II

extreme value distribution, which is equivalent to taking the reciprocal of values from a

standard Weibull distribution. Extreme Value distributions, are widely used in risk man-

agement, finance, insurance, economics, hydrology, material sciences, telecommunica-

tions and many other industries dealing with extreme events. The Fréchet distribution is

useful for modeling and analysis of several extreme events ranging from accelerated life

testing to earthquakes, floods, rainfall, sea currents and wind speeds, etc. More informa-

tion about the Fréchet distribution can be found in Kotz and Nadarajah(2000), Coles (2001)

and Johnson et al. (2004), Nadarajah and Kotz(2008), Mubarak(2012), Harlow (2002) etc.
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Abd-Elfattah et al.(2010) discussed goodness of fit tests for generalized Fréchet distribu-

tion.

Nadarajah and Kotz(2003) introduced the exponentiated Fréchet distribution with dis-

tribution function

F (x) = 1− (1− exp{−(
σ

x
)λ})α;

x > 0,α > 0,β > 0, λ > 0 ,σ > 0. For α = 1, the exponentiated Fréchet dis-

tribution becomes the Fréchet distribution with parameters λ and σ. Abd-Elfattah and

Omima (2009) discussed estimation of parameters of the generalized Fréchet distribution.

Nadarajah and Gupta (2004) introduced the Beta Fréchet distribution with the distribution

function

F (x) =
1

B(a, b)

∫ e−(σx )λ

0

wa−1(1− w)b−1dw;x, σ, λ, a, b > 0.

The Beta Fréchet distribution generalizes some well known distributions. For a = 1, we

obtain the exponentiated Fréchet distribution with parameters σ,λ and α = b. For a = 1

and b = 1 we obtain the Fréchet distribution with parameters σ and λ.

Recently, Krishna et al.(2013 a) introduced Marshall-Olkin Fréchet distribution with

survival function given by

Ḡ(x) =
θ(1− exp{−(σ

x
)λ})

θ + (1− θ)exp{−(σ
x
)λ}

where x > 0,θ > 0, λ > 0 and σ > 0. Krishna et al.(2013 b) also discussed the

applications of Marshall-Olkin Fréchet distribution. Mahmoud et al.(2013) introduced the

transmuted Fréchet distribution. Here we consider the EG class of distributions corre-
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sponding to Fréchet distribution and it is extended to the Marshall-Olkin exponentiated

generalized Fréchet distribution.

This chapter concentrates on Marshall-Olkin Exponentiated Generalized Fréchet Dis-

tribution and its Applications. In section 3.2 we discuss the important properties of the

Exponentiated generalized Fréchet distribution. Marshall-Olkin Exponentiated generalized

Fréchet Distribution and its properties are discussed in section 3.3. In section 3.4 we

consider the quantiles and distribution of order statistics. In section 3.5 the maximum

likelihood estimates are obtained and the results are applied to a real data set to com-

pare the new distribution with Exponentiated generalized Fréchet distribution. Reliability

of a system following Marshall-Olkin extended Fréchet distribution under stress-strength

model is estimated in section 3.6. Its validity is examined using average bias and average

mean square error calculated from the simulated values. Simulation studies are conducted

to compute the average length of the asymptotic 95% confidence intervals and coverage

probability.

6.2 Exponentiated Generalized Fréchet Distribution

The c.d.f.of the Fréchet distribution is G(x) = exp{−(σ
x
)λ} where σ, λ > 0. Then we

define the Exponentiated Generalized Fréchet (EGF) with cumulative distribution by

F (x) = [1− (1− exp{−(
σ

x
)λ})α]β (6.2.1)

where x > 0,α > 0, β > 0, λ > 0 and σ > 0. The EGF density can be obtained from

(1.3.4) as

f(x) = αβλσλx−(λ+1)exp{−(
σ

x
)λ}
(

1− exp{−(
σ

x
)λ}
)α−1

[
1−

(
1− exp{−(

σ

x
)λ}
)α]β−1
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Figure 6.1: The p.d.f. of EGF distribution

Here when β = 1, the distribution reduces to the Exponentiated Fréchet distribution

and when α = 1,β = 1, it reduces to the standard Fréchet distribution. The survival

function and hazard rate function of the EGF distribution is given by

F̄ (x) = 1− [1− (1− exp{−(
σ

x
)λ})α]β (6.2.2)

and

r(x) = αβλσλx−(λ+1)exp{−(
σ

x
)λ}
(

1− exp{−(
σ

x
)λ}
)α−1

[
1−

(
1− exp{−(σ

x
)λ}
)α]β−1

1− [1− (1− exp{−(σ
x
)λ})α]β

Figure 6.1 shows the p.d.f. of EGF distribution for different values of parameters.

Figure 6.2 shows the hazard function of EGF distribution for different values of param-
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Figure 6.2: Hazard rate function of EGF distribution

eters.

The pth quantile function xp of the EGF distribution, which is the inverse of the distri-

bution function F (xp) = p is given by

xp =

[
−σλ

log[1− (1− p)
1
β ]

1
α

] 1
λ

6.3 Marshall-Olkin Exponentiated Generalized Fréchet Distribution

Consider the survival function of exponentiated generalized Fréchet distribution F̄ (x) =

1−[1−(1−exp{−(σ
x
)λ})α]β. In this section we introduce the Marshall-Olkin Exponentiated

Generalized Fréchet Distribution using Marshall-Olkin techniques. It is denoted by MOEGF
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distribution. The survival function of MOEGF distribution is given by

Ḡ(x) =
θ
[
1− [1− (1− exp{−(σ

x
)λ})α]β

]
1− (1− θ)

[
1− [1− (1− exp{−(σ

x
)λ})α]β

] (6.3.1)

Then the corresponding probability density function is given by

g(x) = θαβλσλx−(λ+1)exp{−(
σ

x
)λ}
(

1− exp{−(
σ

x
)λ}
)α−1

(6.3.2)[
1−

(
1− exp{−(σ

x
)λ}
)α]β−1(

1− θ + θ[1− (1− exp{−(σ
x
)λ})α]β

)2 (6.3.3)

α > 0, β > 0, λ > 0, σ > 0, θ > 0.

The cumulative distribution function is given by

G(x) =
[1− (1− exp{−(σ

x
)λ})α]β

θ + (1− θ)[1− (1− exp{−(σ
x
)λ})α]β

and the hazard rate function is given by

h(x) =
αβλσλx−(λ+1)exp{−(σ

x
)λ}[A(x)]α−1[1− [A(x)]α]β−1

K(x)[1− αK(x)]

where A(x) = (1− exp{−(σ
x
)λ}) and

K(x) = [1− [1− (1− exp{−(σ
x
)λ})α]β]

Figure 6.3 shows the pdf of MOEGF distribution for different values of parameters.
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Figure 6.3: The p.d.f. of MOEGF distribution for different values of parameters

6.4 Quantiles and Order statistics

The pth quantile function of the distribution, which is the inverse of the distribution function

F (xp) = p, is given by

x =
−1

σ

[
log

{
[1− pθ

1− p(1− θ)
]
1
β

} 1
α

] 1
λ

Let X1, X2, ..., Xn be a random sample taken from the MOEGF distribution and

X1:n, X2:n, ..., Xn:n be the corresponding order statistics. The survival function of

MOEGF distribution is given by (6.3.1). Then the c.d.f. of the first order statistic X1:n
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is given by

G1:n(x) = 1− (Ḡ(x))n

= 1−

[
θ
[
1− [1− (1− exp{−(σ

x
)λ})α]β

]
1− (1− θ)

[
1− [1− (1− exp{−(σ

x
)λ})α]β

]]n

The c.d.f. of the nth order statistic Xn:n is given by

Gn:n(x) = [1− Ḡ(x)]n

=

{
[1− (1− exp{−(σ

x
)λ})α]β

θ + (1− θ)[1− (1− exp{−(σ
x
)λ})α]β

}n

The probability density function gi:n(x) of the ith order statistics Xi:n is given by

gi:n(x) =
n!

(i− 1)!(n− 1)!
θαβλσλx−(λ+1)exp{−(

σ

x
)λ}
(

1− exp{−(
σ

x
)λ}
)α−1

[
1−

(
1− exp{−(σ

x
)λ}
)α]β−1(

1− θ̄ + θ̄[1− (1− exp{−(σ
x
)λ})α]β

)2{
[1− (1− exp{−(σ

x
)λ})α]β

θ + (1− θ)[1− (1− exp{−(σ
x
)λ})α]β

}i−1

{
θ
[
1− [1− (1− exp{−(σ

x
)λ})α]β

]
1− (1− θ)

[
1− [1− (1− exp{−(σ

x
)λ})α]β

]}n−i
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6.5 Estimation of Parameters

In this section we consider maximum likelihood estimates of the parameters with respect

to a given sample (x1, x2, ..., xn). Then the log likelihood function is given by

logL(α, β, σ, λ, θ) = n [log θ + logα + log β + log λ+ λ log σ]−

(λ+ 1)
n∑
i=1

log xi − λ
n∑
i=1

(
σ

xi
) + (α− 1)

n∑
i=1

log[1− exp{−(
σ

xi
)λ}] +

(β − 1)
n∑
i=1

[1− (1− exp{−(
σ

xi
)λ})α]−

2
n∑
i=1

log

{
1− θ̄ + θ̄[1− (1− exp{−(

σ

xi
)λ})α]β

}

The partial derivative of the log likelihood functions with respect to the parameters are

∂ logL

∂α
=
n

α
+

n∑
i=1

log(1− exp{−(
σ

xi
)λ})− (β − 1)

n∑
i=1

log(1− exp{−(
σ

xi
)λ})

(1− exp{−( σ
xi

)λ})α

1− (1− exp{−( σ
xi

)λ})α
+ 2θβ

n∑
i=1

(1− exp{−(
σ

xi
)λ})α

log(1− exp{−(
σ

xi
)λ})

[1− (1− exp{−( σ
xi

)λ})α]β−1{
1− θ̄ + θ̄[1− (1− exp{−( σ

xi
)λ})α]β

}

∂ logL

∂β
=
n

β
+

n∑
i=1

log[1− (1− exp{−(
σ

xi
)λ})α]−

2θ
n∑
i=1

log[1− (1− exp{−(
σ

xi
)λ})α]

[1− (1− exp{−( σ
xi

)λ})α]β{
1− θ̄ + θ̄[1− (1− exp{−( σ

xi
)λ})α]β

}
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∂ logL

∂σ
=
nλ

σ
+ λ

n∑
i=1

1

xi
+ (α− 1)λσλ−1

n∑
i=1

( 1
xi

)λ exp{−( σ
xi

)λ}
(1− exp{−( σ

xi
)λ})

−(β − 1)αλσλ−1

n∑
i=1

exp{−(
σ

xi
)λ}( 1

xi
)λ

(1− exp{−( σ
xi

)λ})α−1

[1− (1− exp{−( σ
xi

)λ})α]

−2αβθλσλ−1

n∑
i=1

(
1

xi
)λ exp{−(

σ

xi
)λ}(1− exp{−(

σ

xi
)λ}α−1)

[1− (1− exp{−( σ
xi

)λ})α]β−1{
1− θ̄ + θ̄[1− (1− exp{−( σ

xi
)λ})α]β

}

∂ logL

∂λ
= n

(
1

λ
+ log σ

)
−

n∑
i=1

log xi − σ
n∑
i=1

1

xi
+ (α− 1)σ

n∑
i=1

( 1
xi

) exp{−( σ
xi

)λ} log( σ
xi

)

(1− exp{−( σ
xi

)λ})
− (β − 1)ασλ

n∑
i=1

(
1

xi
)λ exp{−(

σ

xi
)λ} log(

σ

xi
)

(1− exp{−( σ
xi

)λ}α−1)

[1− (1− exp{−( σ
xi

)λ})α]

−2αβθσλ
n∑
i=1

(
1

xi
)λ exp{−(

σ

xi
)λ} log(

σ

xi
)

(1− exp{−(
σ

xi
)λ}α−1)

[1− (1− exp{−( σ
xi

)λ})α]β−1{
1− θ̄ + θ̄[1− (1− exp{−( σ

xi
)λ})α]β

}

∂ logL

∂θ
=
n

θ
− 2

n∑
i=1

[1− (1− exp{−( σ
xi

)λ})α]β{
1− θ̄ + θ[1− (1− exp{−( σ

xi
)λ})α]β

}
The maximum likelihood estimates can be obtained by solving the equations

∂ logL
∂α

= 0,∂ logL
∂β

= 0,∂ logL
∂σ

= 0,∂ logL
∂λ

= 0,∂ logL
∂θ

= 0

The equations can be solved using nlm package in R software.
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Table 6.1: Summary of fitting for the MOEGF and exponentiated generalized Frèchet
distribution.

Model Parameter Estimates -Log-likelihood K-S statistic
EGF α 0.0828 416.6228 0.8078

β 0.0849
λ 0.0718
σ 0.0245

MOEGF α 0.0758 304.626 0.6975
β 0.0763
λ 0.0849
σ 0.0508
θ 0.0654

6.5.1 Data Analysis

In this section we analyze some data sets and compare Marshall-Olkin exponentiated gen-

eralized Fréchet distribution with the exponentiated generalized Fréchet distribution. We

consider the data from Lawless(1986). The data given here arose in tests on endurance

of deep groove ball bearings. The data are the number of million revolutions before failure

for each of the 23 ball bearings in the life test and they are

17.88, 28.92, 33.00, 41.52, 42.12, 45.60, 48.80, 51.84, 51.96, 54.12, 55.56, 67.80,68.64,

68.64, 68.88, 84.12, 93.12, 98.64, 105.12, 105.84, 127.92, 128.04, 173.40.

We estimate the unknown parameters of the distribution by the method of maximum

likelihood estimation. Also, we draw the P-P plots and Q-Q plots for fitted distributions

and are presented in Figure 6.4 and in Figure 6.5. We can see that the Marshall-Olkin

exponentiated generalized Fréchet distribution is a good fit as compared to exponentiated

generalized Fréchet distribution.

6.6 Stress-Strength Analysis

In this section we consider the stress-strength reliability R = P (X < Y ), where X repre-

sents stress and Y represents the strength. Gupta et al. (2010) obtained various results

on the MO family in the context of reliability modeling and survival analysis.
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Figure 6.4: QQ and PP plot for MOEGF Distribution

Figure 6.5: QQ and PP plot for EGF Distribution
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P (X < Y ) =

∫ ∞
−∞

P (Y > X/X = x)gX(x)dx

=
α1

α2

(α1

α2
− 1)2

[
− log

α1

α2

+
α1

α2

− 1

]

Consider the p.d.f. of Marshall-Olkin Exponentiated Generalized Frèchet distribution

given by

g(x) = θαβλσλx−(λ+1)exp{−(
σ

x
)λ}
(

1− exp{−(
σ

x
)λ}
)α−1

[
1−

(
1− exp{−(σ

x
)λ}
)α]β−1(

1− θ + θ[1− (1− exp{−(σ
x
)λ})α]β

)2

α > 0, β > 0, λ > 0, θ > 0, σ > 0.

Let (x1, x2, ..., xm) and (y1, y2, ..., yn) be two independent random samples of sizes

m and n from Marshall-Olkin Exponentiated Generalized Fréchet distribution with tilt pa-

rameters α1 and α2 respectively, and common unknown parameters β, λ and θ. The log

likelihood function is given by

L(α1, α2, β, λ, θ) =
m∑
i=1

log g(xi;α1, β, λ, θ, σ) +
n∑
j=1

log g(yj;α2, β, λ, θ, σ)

The maximum likelihood estimates of the unknown parameters α1, α2 are the solutions

of non linear equations ∂L
∂α1

= 0 and ∂L
∂α2

= 0 respectively.

6.6.1 Simulation Study

We generate N = 10000 values of X and Y observations from Marshall-Olkin Exponen-

tiated Generalized Frèchet distribution with parameters α1, β, λ, θ, σ and α2, β, λ, θ, σ re-

spectively. The combinations of samples of sizes m = 20, 25, 30 and n = 20, 25, 30 are
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considered. The estimates of α1 and α2 are obtained from each sample to obtain R̂. The

validity of the estimate of R is examined as in section 5.6. The average bias and aver-

age mean square error of the simulated estimates of R for various values of parameters

are given in Table 6.2. The average confidence length and coverage probability of the

simulated estimates are given in Table 6.3.

6.7 Conclusion

In this chapter we have introduced a new distribution namely, Marshall-Olkin Exponenti-

ated Generalized Fréchet Distribution and its properties are discussed. We analyze a real

data set and compare MOEGF distribution with the exponentiated generalized Fréchet

distribution. We conclude that the MOEGF distribution is a better fit as compared to expo-

nentiated generalized Fréchet distribution. The results are given in Table 6.1. Estimation of

stress-strength reliability is also done. The average bias and average mean square error

of the simulated estimates of R for various values of parameters are given in Table 6.2.

The average confidence length and coverage probability of various values of parameters

are given in Table 6.3. The R program developed is given as Appendix.

6.8 Appendix

#MOEGF DISTRIBUTION

# Probability density function

dMOEGF<-function(x,alpha,beta,lambda,sigma,theta) {

temp <- exp(-(sigma/x)^lambda)

theta*alpha*beta*lambda*sigma^lambda*x^(lambda+1)*temp*(1-temp)^(alpha-1)*(1-(1-temp)^alpha)^(beta-1)

/(1-(1-theta)+(1-theta)*(1-(1-temp)^alpha)^beta)^2

}

# Distribution function

pMOEGF<-function(x,alpha,beta,lambda,sigma,theta) {

temp <- -(sigma/x)^lambda

temp <- (1-exp(temp))^alpha

theta*(1-(1-temp)^beta)/(1-(1-theta)*(1-(1-temp)^beta))

}

# Quantile function

qMOEGF<-function(p,alpha,beta,lambda,sigma,theta) {

-1/sigma*(log((1-p*theta/(1-p*(1-theta)))^(1/beta))^(1/alpha))^(1/lambda)

}
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Table 6.2: Average bias and average MSE of the simulated estimates of R for β =
4, λ = 3, σ = 2 and θ = 2

(α1, α2)
Average bias (b̄) Average Mean Square Error (AMSE)

(m,n) (0.8,0.9) (1.2,1.4) (1.5,1.9) (2,1.5) (0.8,0.9) (1.2,1.4) (1.5,1.9) (2,1.5)

(20,20) 0.0378 0.0509 0.0771 -0.0938 0.0037 0.0051 0.0087 0.0115
(20,25) 0.0384 0.0496 0.0767 -0.0934 0.0037 0.0051 0.0086 0.0114
(20,30) 0.0380 0.0508 0.0772 -0.0924 0.0037 0.0052 0.0086 0.0112

(25,20) 0.0395 0.0530 0.0788 -0.0920 0.0036 0.0051 0.0086 0.0109
(25,25) 0.0406 0.0527 0.0803 -0.0909 0.0037 0.0051 0.0089 0.0108
(25,30) 0.0402 0.0521 0.0801 -0.0922 0.0037 0.0050 0.0088 0.0110

(30,20) 0.0415 0.0541 0.0810 -0.0895 0.0036 0.0051 0.0088 0.0102
(30,25) 0.0421 0.0539 0.0815 -0.0897 0.0037 0.0051 0.0089 0.0103
(30,30) 0.0408 0.0539 0.0813 -0.0894 0.0035 0.0051 0.0088 0.0102

Table 6.3: Average confidence length and coverage probability of the simulated 95%
percentage confidence intervals of R for for β = 4, λ = 3, σ = 2 and θ = 2

(α1, α2)
Average Confidence Length Coverage Probability

(m,n) (0.8,0.9) (1.2,1.4) (1.5,1.9) (2,1.5) (0.8,0.9) (1.2,1.4) (1.5,1.9) (2,1.5)

(20,20) 0.3544 0.3537 0.3525 0.3517 0.9963 0.9896 0.9630 0.9311
(20,25) 0.3363 0.3356 0.3344 0.3337 0.9934 0.9849 0.9486 0.9079
(20,30) 0.3236 0.3229 0.3218 0.3212 0.9922 0.9791 0.9379 0.8910

(25,20) 0.3335 0.3357 0.3346 0.3341 0.9948 0.9871 0.9544 0.9283
(25,25) 0.3172 0.3166 0.3153 0.3150 0.9928 0.9815 0.9304 0.8947
(25,30) 0.3037 0.3031 0.3019 0.3015 0.9899 0.9760 0.9153 0.8674

(30,20) 0.3238 0.3232 0.3217 0.3220 0.9945 0.9845 0.9420 0.9216
(30,25) 0.3038 0.3032 0.3020 0.3020 0.9891 0.9745 0.9148 0.8893
(30,30) 0.2869 0.2891 0.2880 0.2880 0.9869 0.9668 0.8941 0.8961
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%# Random generation

rMOEGF<-function(alpha,beta,lambda,sigma,theta,nobs) {

varSample<-double(nobs)

for (i in 1:nobs) {

p<-runif(1)

varSample[i]<- -1/sigma*(log((1-p*theta/(1-p*(1-theta)))^(1/beta))^(1/alpha))^(1/lambda)

}

varSample

}

# Log-likelihood function

logLikelihoodMOEGF<-function(x) {

alpha<-x[1]

beta<-x[2]

lambda<-x[3]

sigma<-x[4]

theta<-x[5]

nobs<-length(y);

temp <- 1-exp(-(sigma/x)^lambda)

nobs*log(theta)+nobs*log(alpha)+nobs*log(beta)+nobs*log(lambda)+nobs*lambda*log(sigma)

-(lambda+1)*sum(log(x))-lambda*sum(sigma/x)+(alpha-1)*sum(log(temp))+(beta-1)*sum(1-temp^alpha)

-2*sum(log(1-(1-theta)+(1-theta)*(1-temp^alpha)^beta))

}

gradientMOEGF <- function(x) {

alpha<-x[1]

beta<-x[2]

lambda<-x[3]

sigma<-x[4]

theta<-x[5]

nobs<-length(y);

temp <- exp(-(sigma/x)^lambda)

der1 <- n/alpha+sum(log(1-temp))-(beta-1)*sum(log(1-temp)*(1-temp)^alpha/(1-(1-temp)^alpha))+2*theta*beta*

sum((1-temp)^alpha*log(1-temp)*(1-(1-temp)^alpha)^(beta-1)/(1-(1-theta)+(1-theta)*(1-(1-temp)^alpha)^beta))

der2 <- n/beta+sum(log(1-(1-temp)^alpha))-2*theta*sum(log(1-(1-temp)^alpha)*(1-(1-temp)^alpha)^beta

/(1-(1-theta)+(1-theta)*(1-(1-temp)^alpha)^beta))

der3 <- n*(1/lambda+log(sigma))-sum(log(x))-sigma*sum(1/x)+(alpha-1)*sigma*sum((1/x)*temp*log(sigma/x)/(1-temp))

-(beta-1)*alpha*sigma^lambda*sum(1/x^lambda*temp*log(sigma/x)*(1-temp)^(alpha-1)/(1-(1-temp)^alpha))-2*alpha*beta

*theta*sigma^lambda*sum(1/x^lambda*temp*log(sigma/x)*(1-temp)^(alpha-1)*(1-(1-temp)^alpha)^(beta-1)/

(1-(1-theta)+(1-theta)*(1-(1-temp)^alpha)^beta))

der4 <- n*lambda/sigma+lambda*sum(1/x)+(alpha-1)*lambda*sigma^(lambda-1)*sum(1/x^lambda*temp/(1-temp))-

(beta-1)*alpha*lambda*sigma^(lambda-1)*sum(temp/x^lambda*(1-temp)^(alpha-1)/(1-(1-temp)^alpha))-2*alpha*

beta*theta*lambda*sigma^(lambda-1)*sum(1/x^lambda*temp*(1-temp)^(alpha-1)*(1-(1-temp)^alpha)^(beta-1)

/(1-(1-theta)+(1-theta)*(1-(1-temp)^alpha)^beta))

der5 <- n/theta-2*sum((1-(1-temp)^alpha)^beta/(1-(1-theta)+(1-theta)*(1-(1-temp)^alpha)^beta))
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c(der1,der2,der3,der4,der5)

}

# We minimize the following function

functionMOEGF<-function(x) {

res<--logLikelihoodMOEGF(x);

# attr(res,"gradient") <- -gradientMOEGF(x);

res

}

# QQ plot

qqMOEGF<-function(y,alpha,beta,lambda,sigma,theta) {

nn<-length(y);

x<-qMOEGF(ppoints(nn),alpha,beta,lambda,sigma,theta)[order(order(y))];

plot(y,x,main="MOEGF Q-Q Plot",xlab="Theoretical Quantile",ylab="Sample Quantiles");

z<-quantile(y,c(0.25,0.75));

xx<-qMOEGF(c(0.25,0.75),alpha,beta,lambda,sigma,theta);

slope<-diff(z)/diff(xx);

int<-z[1]-slope*xx[1];

abline(int,slope)

}

# PP plot

ppMOEGF<-function(y,alpha,beta,lambda,sigma,theta) {

nn<-length(y);

yvar<-pMOEGF(sort(y),alpha,beta,lambda,sigma,theta);

xvar<-1:nn;

x<-(xvar-0.5)/nn;

plot(yvar,x,main="MOEGF P-P Plot",xlab="Expected",ylab="Observed");

curve(1*x,0,1,add=T)

}

#EGF DISTRIBUTION:

# Probability density function

dEGF<-function(x,alpha,beta,lambda,sigma) {

temp <- exp(-(sigma/x)^lambda)

alpha*beta*lambda*sigma^lambda*x^(lambda+1)*temp*(1-temp)^(alpha-1)*(1-(1-temp)^alpha)^(beta-1)

}

# Distribution function

pEGF<-function(x,alpha,beta,lambda,sigma) {

temp <- -(sigma/x)^lambda

temp <- (1-exp(temp))^alpha

(1-(1-temp)^beta)

}

# Quantile function

qEGF<-function(p,alpha,beta,lambda,sigma) {

(-sigma^lambda/log(1-(1-p)^(1/beta))^(1/alpha) )^(1/lambda)
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}

# Random generation

rEGF<-function(alpha,beta,lambda,sigma,nobs) {

varSample<-double(nobs)

for (i in 1:nobs) {

p<-runif(1)

varSample[i]<-(-sigma^lambda/log(1-(1-p)^(1/beta))^(1/alpha) )^(1/lambda)

}

varSample

}

# Log-likelihood function

logLikelihoodEGF<-function(x) {

alpha<-x[1]

beta<-x[2]

lambda<-x[3]

sigma<-x[4]

nobs<-length(y);

temp <- 1-exp(-(sigma/x)^lambda)

nobs*log(alpha)+nobs*log(beta)+nobs*log(lambda)+nobs*lambda*log(sigma)-

(lambda+1)*sum(log(x))-lambda*sum(sigma/x)+(alpha-1)*sum(log(temp))+

(beta-1)*sum(1-temp^alpha)

}

#gradientEGF <- function(x) {

alpha<-x[1]

beta<-x[2]

lambda<-x[3]

sigma<-x[4]

nobs<-length(y);

temp <- exp(-(sigma/x)^lambda)

der1 <- n/alpha+sum(log(1-temp))-(beta-1)*sum(log(1-temp)*(1-temp)^alpha/(1-(1-temp)^alpha))

der2 <- n/beta+sum(log(1-(1-temp)^alpha))

der3 <- n*(1/lambda+log(sigma))-sum(log(x))-sigma*sum(1/x)+(alpha-1)*sigma*sum((1/x)*temp*log(sigma/x)/(1-temp))

-(beta-1)*alpha*sigma^lambda*sum(1/x^lambda*temp*log(sigma/x)*(1-temp)^(alpha-1)/(1-(1-temp)^alpha))

der4 <-n*lambda/sigma+lambda*sum(1/x)+(alpha-1)*lambda*sigma^(lambda-1)*sum(1/x^lambda*temp/

(1-temp))-(beta-1)*alpha*lambda*sigma^(lambda-1)*sum(temp/x^lambda*(1-temp)^(alpha-1)/(1-(1-temp)^alpha))

c(der1,der2,der3,der4)

# We minimize the following function

functionEGF<-function(x) {

res<--logLikelihoodEGF(x);

# attr(res,"gradient") <- -gradientMOEGF(x);

res

}

-loglikelihoodEGF(x);
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# QQ plot

qqEGF<-function(y,alpha,beta,lambda,sigma) {

nn<-length(y);

x<-qEGF(ppoints(nn),alpha,beta,lambda,sigma)[order(order(y))];

plot(y,x,main="EGF Q-Q Plot",xlab="Theoretical Quantile",ylab="Sample Quantiles");

z<-quantile(y,c(0.25,0.75));

xx<-qEGF(c(0.25,0.75),alpha,beta,lambda,sigma);

slope<-diff(z)/diff(xx);

int<-z[1]-slope*xx[1];

abline(int,slope)

}

# PP plot

ppEGF<-function(y,alpha,beta,lambda,sigma) {

nn<-length(y);

yvar<-pEGF(sort(y),alpha,beta,lambda,sigma);

xvar<-1:nn;

x<-(xvar-0.5)/nn;

plot(yvar,x,main="EGF P-P Plot",xlab="Expected",ylab="Observed");

curve(1*x,0,1,add=T)

}

}
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CHAPTER 7

Exponentiated Marshall-Olkin Exponential

and Weibull Distributions

7.1 Introduction

Exponential and Weibull distribution play a central role in reliability theory and sur-

vival analysis. Marshall and Olkin (1997) introduced a new family of distributions by

adding a parameter to obtain new families of distributions which are more flexible and

represent a wide range of behavior than the original distributions. Here we consider the

exponentiated Marshall-Olkin family of distributions which can be regarded as Gamma

compounding models. Many authors have proposed various univariate distributions be-

longing to Marshall-Olkin family of distributions. Ghitany et al.(2005) introduced Marshall-

Olkin extended Weibull which can be obtained as a compound distribution with mixing

exponential distribution. Ghitany(2005) discussed Marshall-Olkin extended Pareto dis-
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tribution. Ristic et al.(2007) proposed Marshall-Olkin extended gamma distribution and

minification process. Ghitany et al.(2007) discussed Marshall-Olkin extended Lomax us-

ing censored data. Srivastava et al.(2011) considered parameter estimation of Marshall-

Olkin extended exponential distribution using MCMC method. Jose and Krishna(2011)

proposed Marshall-Olkin extend Uniform distribution. Srivastava and Kumar (2011) esti-

mated the two-parameter of the Marshall-Olkin extended Weibull using maximum likelihood

estimate and Bayes estimate method. Jose et al.(2011) discussed Marshall-Olkin bivari-

ate Weibull distribution and processes. Krishna et al.(2013a,b) introduced Marshall-Olkin

Frèchet distribution and discussed its applications in reliability, sampling plan etc. Cordeiro

and Lemonte (2013) studied some mathematical properties of Marshall-Olkin extended

Weibull distribution. Jose et al.(2014) discuss on record values and reliability properties of

Marshall-Olkin extended exponential distribution.

In this chapter we consider the Exponentiated Marshall-Olkin exponential and Weibull

distribution. The generalization introduced by Jayakumar and Thomas (2008) is applied

here to develop exponentiated Marshall-Olkin families of distributions. We introduce two

new distributions namely, Exponentiated Marshall-Olkin exponential distribution and Expo-

nentiated Marshall-Olkin Weibull distribution are considered. Various properties are stud-

ied including quantiles, order statistics, record values and Rényi entropy. Estimation of

parameters is also considered. A real data set is analyzed as an application.

7.2 Exponentiated Marshall-Olkin Exponential Distribution

Here we consider the generalization of Marshall-Olkin family of distributions introduced

by Jayakumar and Thomas (2008). Consider the survival function of exponential distri-

bution F̄ (x) = e−λx; λ > 0 and introduce the Exponentiated Marshall-Olkin Exponential

distribution (EMOE) with survival function given by

G(x) =

(
αe−λx

1− (1− α)e−λx

)γ
; α > 0, γ > 0, λ > 0. (7.2.1)
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Figure 7.1: The p.d.f. of EMOE

Then the corresponding probability density function is given by

g(x;α, γ, λ) =
γλ(αe−λx)γ

(1− (1− α)e−λx)γ+1
;α > 0, γ > 0, λ > 0.

When γ = 1, g(x) becomes Marshall-Olkin Exponential distribution. When α = 1, γ = 1 it

becomes exponential distribution.

Figure 7.1 gives the probability density function of EMOE for various combinations of val-

ues of parameters.

The hazard rate function is given by

h(x;α, γ) =
γλ

1− (1− α)e−λx

=
γλeλx

eλx − (1− α)
;α > 0, γ > 0, λ > 0

Thus the hazard rate function of this distribution is a multiple of γ as compared to the MOE

distribution. Figure 7.2 shows the hazard rate function for various combination values of

parameters.
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Figure 7.2: Hazard rate function of EMOE

7.2.1 Quantiles and Order statistics

The pth quantile function of the distribution, obtained by taking the inverse of the distribution

function F (xp) = p, is given by

x =
1

λ
log[α(1− p)

−1
γ + (1− α)]

Let X1, X2, ..., Xn be a random sample taken from the EMOE distribution and

X1:n, X2:n, ..., Xn:n be the corresponding order statistics. The survival function of EMOE

distribution is given by (7.2.1). Then the c.d.f. of the first order statistic X1:n is given by

G1:n(x) = 1−
(

α

eλx − (1− α)

)nγ
; α > 0, γ > 0, λ > 0.

The c.d.f. of the nth order statistic Xn:n is given by

Gn:n(x) =

[
1−

(
α

eλx − (1− α)

)γ]n
=

n∑
i=0

(−1)n
(
n

i

)[
α

eλx − (1− α)

]iγ
; α > 0, γ > 0, λ > 0.
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The probability density function of the ith order statistics Xi:n is given by

gi:n(x) =
n!

(i− 1)!(n− 1)!

αγγλe−γλx

[1− (1− α)e−λx]γ+1[
1− αγe−γλx

[1− (1− α)e−λx]γ

]i−1 [
αγe−γλx

[1− (1− α)e−λx]γ

]n−i

This can be written as a finite mixture of the probability density functions of EMOE

distributed random variables since

gi:n(x) =
n!

(i− 1)!(n− 1)!

i−1∑
k=0

(−1)k
(
i−1
k

)
n− i+ k + 1

g(x;α, γ(n− i+ k + 1), λ)

7.2.2 Estimation of Parameters

Consider the estimation of unknown parameters by the method of maximum likelihood. For

a given sample (x1, x2, ...xn), the log likelihood function is given by

logL = n log γ + n log λ+ nγ logα− γλ
n∑
i=1

xi − (γ + 1)
n∑
i=1

log[1− (1− α)e−λxi ]

The partial derivatives of the log-likelihood function is given by

∂ logL

∂α
=

nγ

α
− (γ + 1)

n∑
i=1

e−λxi

[1− (1− α)e−λxi ]

∂ logL

∂λ
=

n

λ
− γ

n∑
i=1

xi − (γ + 1)
n∑
i=1

λ(1− α)e−λxi

[1− (1− α)e−λxi ]
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∂ logL

∂γ
=

n

γ
+ n logα− λ

n∑
i=1

xi −
n∑
i=1

[1− (1− α)e−λxi ]

The maximum likelihood estimates can be obtained from solving ∂ logL
∂α

= 0, ∂ logL
∂λ

= 0

and ∂ logL
∂γ

= 0. The solutions can be obtained by using nlm package in R software.

7.2.3 Rényi Entropy

Entropy is a measure of uncertainty regarding a random variable. Rényi entropy is a

generalization of Shannon entropy. Rényi entropy of a random variable with probability

density function is given by IR(θ) = 1
1−θ log

∫∞
0
gθ(x)dx; θ > 0, θ 6= 1.

When θ = 1 it reduces to Shannon entropy.∫ ∞
0

gθ(x)dx =
(γλαγ)θe−θγλx

[1− (1− α)e−λx]θ(γ+1)

If we put u = e−λx, we get∫ ∞
0

gθ(x)dx = (γλαγ)θλ−1

∫ 1

0

uγθ−1

[1− (1− α)u]θ(γ+1)

= (γλαγ)θλ−1
2F1(θ(γ + 1), γθ; 1 + γθ; 1− α)

Therefore, the Rényi entropy is given by

IR(θ) =
1

1− θ
log
[
(γλαγ)θλ−1

2F1(θ(γ + 1), γθ; 1 + γθ; 1− α)
]

=
1

1− θ
[θ log(γλαγ)− log λ+ log[2F1(θ(γ + 1), γθ; 1 + γθ; 1− α)]]
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7.3 Exponentiated Marshall-Olkin Weibull Distribution

We consider the distribution function of Weibull distribution F (x) = 1−e−(λx)β ; λ > 0, β >

0, x > 0 and introduce the Exponentiated Marshall-Olkin Weibull(EMOW) distribution

given by the survival function

Ḡ(x) =

(
αe(−λx)β

1− (1− α)e(−λx)β

)γ

; α > 0, β > 0, γ > 0, λ > 0. (7.3.1)

The corresponding probability density function is given by

g(x;α, β, γ, λ) =
γαγβλβxβ−1e−γλ

βxβ

[1− (1− α)e−λβxβ ]γ+1
; ; α > 0, β > 0, γ > 0, λ > 0.

We denote it as EMOW(α, β, γ, λ). Then we have,

1. When γ = 1, the density becomes Marshall-Olkin Weibull distribution.

2. When α = 1, γ = 1, it becomes the Weibull distribution.

3. When β = 1, γ = 1, it becomes Marshall-Olkin Exponential distribution and

4. When α = 1, β = 1, γ = 1, it becomes the Exponential distribution.

The hazard rate function of the EMOW distribution is given by

h(x;α, β, γ, λ) =
γβλβxβ−1eλ

βxβ

eλβxβ − (1− α)

Figure 7.1 and Figure 7.2 shows the probability density function and hazard rate function

for different combination values of parameters.
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Figure 7.3: The p.d.f. of EMOW

Figure 7.4: Hazard rate function for EMOW
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7.3.1 Quantiles and Order statistics

The pth quantile function of the distribution, the inverse of the distribution function F (xp) =

p, is given by

x =
1

λ
log[α(1− p)

−1
γ + (1− α)]

1
γ

Let X1, X2, ..., Xn be a random sample taken from the EMOW distribution and

X1:n, X2:n, ..., Xn:n be the corresponding order statistics. The survival function of EMOW

distribution is given by (7.3.1). Then the c.d.f. of the first order statistic X1:n is given by

G1:n(x) = 1−
(

α

e(λx)β − (1− α)

)nγ
; α > 0, γ > 0, λ > 0.

The c.d.f. of the nth order statistic Xn:n is given by

Gn:n(x) =

[
1−

(
α

e(λx)β − (1− α)

)γ]n
=

n∑
i=0

(−1)n
(
n

i

)[
α

e(λx)β − (1− α)

]iγ
; α > 0, γ > 0, λ > 0.

The probability density function of the ith order statistics Xi:n is given by

gi:n(x;α, β, γ, λ) =
n!

(i− 1)!(n− 1)!

γαγβλβxβ−1e−γ(λx)β

[1− (1− α)e−(λx)β ]γ+1[
1− (αe−(λx)β)γ

[1− (1− α)e−(λx)β ]γ

]i−1 [
(αe−(λx)β)γ

[1− (1− α)e−(λx)β]γ

]n−i

This can be written as a finite mixture of the probability density functions of EMOW
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distributed random variables since

gi:n(x;α, β, γ, λ) =
n!

(i− 1)!(n− 1)!

i−1∑
k=0

(−1)k
(
i−1
k

)
n− i+ k + 1

g(x;α, β, γ(n− i+ k + 1), λ)

7.3.2 Record values

Record values are used in reliability theory. Chandler (1952) introduced a statistical study

of record values as a model for successive extremes in a sequence of i.i.d random vari-

ables. The theory of record values and its distributional properties are studied by Ahsan-

ullah (1995,1997), Raqab (2001), Balakrishnan and Ahsanullah (1994), Saran and Singh

(2008) and Jose et al.(2014) discusses on record values from Marshall-Olkin Extended

Exponential distribution.

Here we consider the record statistics of Exponentiated Marshall-Olkin Weibull distri-

bution with γ = β = 1 with the pdf is given by

g(x) =
αλ

[eλx − (1− α)]2
; 0 < x <∞ (7.3.2)

Using (1.3.1), we get the pdf of nth record of EMOW (α, λ) given by

gRn(x) =

[
log[eλx − (1− α)]− logα

]n−1

(n− 1)!

αλ

[eλx − (1− α)]2

Using (1.3.2) , we get the joint pdf of mth and nth record statistics of EMOW(α, λ)

gRm,Rn(x, y) =

[
log[eλx − (1− α)]− logα

]m−1

(m− 1)![
log[eλy − (1− α)]− log[eλx − (1− α)]

]n−m−1

(n−m− 1)!

λ2e−λy

[1− (1− α)e−λx][1− (1− α)e−λy]2
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7.3.3 Estimation of Parameters

Consider the estimation of unknown parameters by the method of maximum likelihood. For

a given sample (x1, x2, ...xn), the log likelihood function is given by

logL = n log γ + nγ logα + n log β + nβ log λ+ (β − 1)
n∑
i=0

xi

−γλβ
n∑
i=0

xβi − (γ + 1)
n∑
i=0

log[1− (1− α)e−(λxi)
β

]

The partial derivatives of the log-likelihood function is given by

∂ logL

∂α
=

nγ

α
− (γ + 1)

n∑
i=1

e−(λxi)
β

[1− (1− α)e−(λxi)β ]

∂ logL

∂β
=

n

β
+ n log λ+

n∑
i=0

xi − γλβ log λ
n∑
i=0

xβi − γλβ
n∑
i=0

xβi log xi

−(γ + 1)
n∑
i=0

(1− α)e−(λxi)
β
[(λxi)

β(log λ+ log xi)]

[1− (1− α)e−(λxi)β ]

∂ logL

∂γ
=

n

γ
+ n logα− λβ

n∑
i=1

xβi −
n∑
i=1

log[1− (1− α)e(−λxi)β ]

∂ logL

∂λ
=

nβ

λ
− γβλβ−1

n∑
i=0

xβi − (γ + 1)
n∑
i=0

(1− α)βλβ−1xβi e
−(λxi)

β

[1− (1− α)e(−λxi)β ]

The maximum likelihood estimates can be obtained from solving ∂ logL
∂α

= 0, ∂ logL
∂λ

= 0
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and ∂ logL
∂γ

= 0. The solutions can be obtained by using nlm package in R software.

7.4 Data Analysis

Here we consider the applications of the models to two data sets. The first data set is used

to compare Exponentiated Marshall-Olkin Exponential distribution with Marshall-Olkin Ex-

ponential and Exponential distribution and the second data is used to compare Exponen-

tiated Marshall-Olkin Weibull distribution with Marshall-Olkin Weibull and Weibull distribu-

tion. To compare the goodness of fit, we use the information criteria AIC = −2 logL+2k,

BIC = −2logL + k log n and the Kolmogrov -Smirnov statistic, where k is the no. of pa-

rameters and n is the sample size.

Data set 1: This data is taken from Lawless (2003). The data set gives the number

of cycles to failure for 25 100-cm specimens of yarn, tested at a particular strain level

and they are 15, 20, 38, 42, 61, 76, 86, 98, 121, 146, 149,157, 175, 176, 180, 180, 198,

220, 224, 251, 264, 282, 321, 325, 653. The maximum likelihood estimates, AIC and BIC

values,and K-S statistic are given in Table 7.1. From Table 7.1, it is seen that the smallest

AIC and BIC values are obtained for EMOE distribution. Hence we conclude that EMOE

distribution is a better model for the data set.

Data set 2: This data is taken from Nadarajah (2008). The following data are the daily

ozone measurements in New York, May-September 1973: 41, 36, 12, 18, 28, 23, 19, 8,

7,16, 11, 14, 18, 14, 34, 6, 30, 11, 1, 11, 4, 32, 23, 45, 115, 37, 29, 71, 39, 23, 21, 37,

20,12, 13, 135, 49, 32, 64, 40, 77, 97, 97, 85, 10, 27, 7, 48, 35, 61, 79, 63, 16, 80, 108,

20,52, 82, 50, 64, 59, 39, 9, 16, 78, 35, 66, 122, 89, 110, 44, 28, 65, 22, 59, 23, 31, 44,

21, 9,45, 168, 73, 76, 118, 84, 85, 96, 78, 73, 91, 47, 32, 20, 23, 21, 24, 44, 21, 28, 9, 13,

46,18, 13, 24, 16, 13, 23, 36, 7, 14, 30, 14, 18, 20. The maximum likelihood estimates,

AIC and BIC values,and K-S statistic are given in Table 7.2. From Table 7.2, it is seen that

the smallest AIC and BIC values are obtained for EMOW distribution. Hence we conclude

that EMOW distribution is a better model for the data set.
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Table 7.1: Estimates, AIC, BIC, and K-S statistic for the data set 1

Model Parameter Estimates AIC BIC K-S statistic

EMOE α 4.9830 310.3464 308.54022 0.1099
γ 0.6717
λ 0.0147

MOE α 1.0512 312.9172 311.71308 0.1862
λ 0.0058

Exponential λ 0.0056 311.179 310.57694 0.1985

Table 7.2: Estimates, AIC , BIC and K-S statistic for the data set 2

Model Parameter Estimates AIC BIC K-S statistic

EMOW α 24.045 948.3768 948.7644 0.0899
β 0.4022
γ 82.067
λ 0.0074

MOW α 0.7028 1205.4056 1205.6963 0.5132
β 0.7180
λ 0.0927

Weibull β 1.3402 1089.2206 1089.4144 0.2863
λ 0.0217
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7.5 Conclusion

In this chapter we consider a generalization of Marshall-Olkin family of distributions. First

we consider EMOE distribution and its properties. Rényi entropy is discussed. Also Ex-

ponentiated Marshall-Olkin Weibull Distribution and its properties, record values etc. are

considered. We analyze two real data sets. First data is used to compare EMOE with MOE

and exponential, and the other to compare EMOW with MOW and Weibull distribution. We

conclude from the two data sets that, EMOE and EMOW are better fits as compared to

others. The results are given in Table 7.1 and Table 7.2.
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CHAPTER 8

Negative Binomial Extreme Stable

Marshall-Olkin Extended Lindley

Distribution and its Applications

8.1 Introduction

Lindley (1958) introduced a distribution as life time model and suggested its applica-

tions for studying stress-strength model in reliability. The probability density function of

Lindley random variable X, with scale parameter λ is given by

f(x, λ) =
λ2

1 + λ
(1 + x)e−λx;x > 0, λ > 0 (8.1.1)
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The corresponding cumulative distribution function (c.d.f.) is given by

F (x, λ) = 1− 1 + λ+ λx

1 + λ
e−λx (8.1.2)

It can be seen that this distribution is a mixture of exponential(λ) and gamma(2, λ) dis-

tributions. Lindley distribution has drawn much attention in the statistical literature over the

great popularity of the well-known exponential distribution. Sankaran (1970) introduced

the discrete Poisson-Lindley distribution by combining the Poisson and Lindley distribu-

tions. Ghitany, Atieh, Nadarajah(2008) investigated most of the statistical properties of

the Lindley distribution. Mahmoudi and Zakerzadeh (2010) proposed an extended version

of the compound Poisson distribution which was obtained by compounding the Poisson

distribution with the generalized Lindley distribution.

Alice and Jose(2005) discuss Marshall-Olkin semi- Weibull minification processes and

Jose et al.(2010) also proposed Marshall-Olkin q-Weibull distribution and maxmin pro-

cesses. Jayakumar and Thomas(2008) developed a generalization of Marshall-Olkin distri-

bution and discuss its application to Burr Type XII distribution. Jose et al.(2011) discussed

Marshall-Olkin bivariate Weibull distributions and applications. Louzada, Roman and Can-

cho(2011) proposed the complimentary exponential geometric distribution by combining

the geometric and exponential distributions. Bakouch et al.(2012) introduced a new ex-

tension of the Lindley distribution, called extended Lindley (EL)distribution, which offers a

more flexible model for lifetime data. Mazucheli and Achcar(2011) discussed the applica-

tions of Lindley distribution to competing risks lifetime data. Ghitany et al.(2011) developed

a two-parameter weighted Lindley distribution and discussed its applications to survival

data. Ghitany et al.(2012) also discusses Marshall-Olkin Extended Lindley distribution and

its application. Zakerzadah and Dolati(2010) obtained a generalized Lindley distribution

and discussed its various properties and applications. Al-Mutairi et al.(2013) developed

inferences on stress-strength reliability from Lindley distributions.

168



CHAPTER 8. NEGATIVE BINOMIAL EXTREME STABLE MARSHALL-OLKIN EXTENDED LINDLEY DISTRIBUTION AND ITS

APPLICATIONS

The Lindley distribution is important for studying stress-strength reliability modeling.

The stress-strength reliability has been originally proposed by Birnbaum (1956). Birnbaum

and McCarty (1958) and Govindarajulu (1968) have discussed the procedure for obtaining

the distribution free confidence interval for stress strength reliability and Cheng and Chao

(1984) have compared the performances of different methods of constructing the confi-

dence interval of stress strength reliability and proposed a new method for obtaining the

s-confidence intervals for the reliability in the stress-strength model. Shanker and Mishra

(2013) introduced a two parameter quasi Lindley distribution as a particular case of Lindley

distribution. A new generalization of Lindley distribution called Transmuted Quasi Lindley

distribution was introduced by Elbatal and Elgarhy (2013).

In this chapter we introduce Negative Binomial Extreme Stable Marshall-Olkin Ex-

tended Lindley Distribution and its Applications. First we consider the properties of Ex-

tended Lindley distribution. Negative binomial extreme stable Marshall-Olkin Extended

Lindley Distribution and its properties are discussed. The quantiles and order statistics are

obtained. Record values associated with the new family is also considered. The maximum

likelihood estimates of the distribution is obtained by using R programme and is applied to

a real data set.

8.2 Extended Lindley Distribution

Consider a particular exponentiation of (8.1.2) to extend the Lindley distribution, for which

the distribution function is given by,

F (x) = 1−
(

1 + λ+ λx

1 + λ

)θ
e−(λx)β (8.2.1)

where θ ∈ R− ∪ {0, 1} , λ > 0, and β ≥ 0.

The extension of the Lindley distribution shall be denoted by extended Lindley (EL)distribution.
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EL distribution has several particular cases. For θ = 1 and β = 1 the EL distribution

is reduced to Lindley distribution and for θ = 0 it reduces to the Weibull distribution.

Also for β = 0 and θ ∈ R−, the EL distribution reduces to Pareto distribution given by

F (x) = 1 −
(

c
1+c

)δ
, where x > 0, c = 1 + 1

λ
and δ > 0. (8.2.1) represents the product of

the survival functions (1−F (x)) of the Lomax and Weibull distribution respectively, for any

β and α ∈ R− (Murthy,Swartz,and Yuen,1973). Ghitany et al.(2007) discussed Marshall-

Olkin extended Lomax distributions and its application to censored data. Extended Lindley

distribution can be seen as a mixture of Lomax and Weibull distribution respectively.

The probability density function of extended Lindley distribution is given by

f(x) =
λ(1 + λ+ λx)θ−1

(1 + λ)θ
(β(1 + λ+ λx)(λx)β−1 − θ)e−(λx)β ;x > 0 (8.2.2)

and the corresponding survival function and hazard rate function are given by

F̄ (x) =

(
1 + λ+ λx

1 + λ

)θ
e−(λx)β ;x > 0, (8.2.3)

and

r(x) =
β(1 + λ+ λx)λβxβ−1 − λθ

1 + λ+ λx
(8.2.4)

The first derivative of r(x) is

r′(x) = β(β − 1)λβxβ−2 +
λ2θ

(1 + λ+ λx)2
(8.2.5)

It is obvious that r′(x) ≤ 0, for β ≤ 1 and θ ≤ 0. The function r(x) is increasing

for θ > k and decreasing for θ < k, where k = −β(β − 1)(λx)β−2(1 + λ + λx)2. For

β > 1, r(0) = f(0) = λθ
1+λ

. Therefore at the origin r(x) varies continuously with the
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parameters. This is in contrast with the Weibull and gamma families, where r(0) = 0

or r(0) = ∞ for both families and hence r(0) is discontinuous in the parameters of such

families. For β = 1, lim
x→∞

r(x) = λ, the function r(x) is bounded above by λ and continuous

in the parameters of the EL distribution.

The pth quantile xp of the EL distribution, the inverse of the distribution function

F (xp) = p is given by

xp =

(
θ

λβ
ln(

1 + λ+ λxp

(1 + λ)(1− p) 1
θ

)

) 1
β

8.3 Negative Binomial Extreme Stable Marshall- Olkin Extended Lind-

ley Distribution

We consider the survival function of extended Lindley distribution F̄ (x) =
(

1+λ+λx
1+λ

)θ
e−(λx)β ,

x > 0. From negative binomial extreme stable family, we introduce Negative Binomial Ex-

treme Stable Marshall-Olkin Extended Lindley distribution. It is denoted by NBESMOEL

distribution. The survival function of negative binomial extreme stable Marshall-Olkin ex-

tended Lindley distribution is given by

G(x) =
αγ

1− αγ

[(
1− (1− α)

(
1 + λ+ λx

1 + λ

)θ
e−(λx)β

)−γ
− 1

]
(8.3.1)

Then the corresponding probability density function is given by

g(x) =
(1− α)γαγλ (1+λ+λx)θ−1

(1+λ)θ
[β(1 + λ+ λx)(λx)β−1 − θ]e−(λx)β

(1− αγ)
{

1− (1− α)(1+λ+λx
1+λ

)θe−(λx)β
}γ+1 (8.3.2)
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Figure 8.1: The p.d.f. of NBESMOEL for various values of parameters.

for α < 1, β, γ, λ, θ > 0 and the cumulative distribution function is given by

G(x) = 1− αγ

1− αγ

[(
1− (1− α)

(
1 + λ+ λx

1 + λ

)θ
e−(λx)β

)−γ
− 1

]
(8.3.3)

Figure 8.1, figure 8.2 and figure 8.3 shows the pdf of NBESMOEL for different combi-

nations of parameter values.

The hazard rate function is given by

h(x) =
(1− α)γF (x)rF (x)

(1− (1− α)F (x))[1− (1− (1− α)F (x))γ]

r(x) =
(1− α)γλ(1 + λ+ λx)θ−1(

(1 + λ)θ − (1− α)(1 + λ+ λx)θe−(λx)β
)

[β(1 + λ+ λx)(λx)β−1 − θ]e−(λx)β[
1−

{
1− (1− α)(1+λ+λx

1+λ
)θe−(λx)β

}]
Figure 8.4, figure 8.5 and figure 8.6 show the hazard rate function of NBESMOEL for
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Figure 8.2: Hazard rate function of NBESMOEL for various values of parameters.

different combinations of parameter values.

8.4 Quantiles and Order statistics

The pth quantile function of the distribution is given by

x =

 1

λβ
ln

(1− α

((1− p)(1− αγ) + αγ)
1
γ

)−1(
1 + λ+ λxp

1 + λ

)θ
(1− α)


1
β

Let X1, X2, ..., Xn be a random sample taken from the NBESMOEL distribution and

X1:n, X2:n, ..., Xn:n be the corresponding order statistics. The survival function of NBESMOEL

distribution is given by (8.3.1). Then the c.d.f of the minimum order statistic X1:n is given

by

G1:n(x) = 1− (G(x))n

= 1−

{
αγ

1− αγ

([
1− (1− α)

(
1 + λ+ λx

1 + λ

)θ
e−(λx)β

]−γ
− 1

)}n
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The c.d.f of the maximum order statistic Xn:n is given by

Gn:n(x) = [1−G(x)]n

=

[
1−

{
αγ

1− αγ

([
1− (1− α)

(
1 + λ+ λx

1 + λ

)θ
e−(λx)β

]−γ
− 1

)}]n

The probability density function gi:n(x) of the ith order statistics Xi:n is given by

gi:n(x) =
n!(1− α)γαγ

(i− 1)!(n− i)!(1− αγ)
{

1− (1− α)
(

1+λ+λx
1+λ

)θ
e−(λx)β

}γ+1

{
1− αγ

1− αγ

([
1− (1− α)

(
1 + λ+ λx

1 + λ

)θ
e−(λx)β

]−γ
− 1

)}i−1

(
αγ

1− αγ

)n−i{([
1− (1− α)

(
1 + λ+ λx

1 + λ

)θ
e−(λx)β

]−γ
− 1

)}n−i

(1 + λ+ λx)θ−1

(1 + λ)θ
[
β(1 + λ+ λx)(λx)β−1 − θ

]
e−(λx)β

8.5 Record values

In this section we consider the record statistics of Negative binomial extreme stable Marshall-

Olkin extended Lindley distribution with γ = θ = β = 1 with the pdf given by

g(x) =
αλ(1 + λ)(λ+ λx)e−(λx)

[(1 + λ)− (1− α)(1 + λ+ λx)e−(λx)]
2 ; 0 < x <∞ (8.5.1)
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Using (1.3.1) and (1.3.2), we get the pdf and joint pdf of NBESMOEL(α, λ) as

gRn(x) =
αλ(1 + λ)(λ+ λx)e−(λx)

[(1 + λ)− (1− α)(1 + λ+ λx)e−(λx)]
2

1

(n− 1)!
×
[
− log

{
α(1 + λ+ λx)e−(λx)

(1 + λ)− (1− α)(1 + λ+ λcmx)e−(λx)

}]n−1

(8.5.2)

gRm,Rn(x, y) =
1

(n− 1)!(n−m− 1)!

[
− log

{
α(1 + λ+ λx)e−(λx)

(1 + λ)− (1− α)(1 + λ+ λx)e−(λx)

}]n−1

[
log

(1 + λ+ λx)e−(λx)

(1 + λ+ λy)e−(λy)

[
(1 + λ)− (1− α)(1 + λ+ λy)e−(λy)

]
[(1 + λ)− (1− α)(1 + λ+ λx)e−(λx)]

]n−m−1

(1 + λ)2αλ2(λ+ λx)(λ+ λy)e−(λy)

[(1 + λ)− (1− α)(1 + λ+ λx)e−(λx)]
1

[(1 + λ)− (1− α)(1 + λ+ λy)e−(λy)] (1 + λ+ λx)

8.6 Estimation of Parameters

In this section we consider maximum likelihood estimation with respect to a given sample

of size x1, x2, ..., xn, then the log likelihood function is given by

logL(α, β, γ, λ, θ) = nlog(1− α) + nlogγ + nγlogα + nlogλ+ (θ − 1)log(1 + λ+ λxi)

+nlogβ +
n∑
i=1

log(1 + λ+ λxi) + (β − 1)
n∑
i=1

log(λxi)− nlogθ

+λβ
n∑
i=1

xβi − nlog(1− αγ)− nθlog(1 + λ)

−(γ + 1)
n∑
i=1

log

[
1− (1− α)

(
1 + λ+ λxi

1 + λ

)θ
e−(λxi)

β

]

The partial derivatives of the log likelihood functions with respect to the parameters
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are

∂ logL

∂α
=

−n
1− α

+
nγ

α
+
nγαγ−1

1− αγ
+ (γ + 1)

n∑
i=1

(
1+λ+λxi

1+λ

)θ
e−(λxi)

β

1− (1− α)
(

1+λ+λxi
1+λ

)θ
e−(λxi)β

∂ logL

∂β
=

n

β
+

n∑
i=1

log(λxi) + λβlogλ+ xβi logxi

+ (γ + 1)(1− α)βλβ
n∑
i=1

(
1+λ+λxi

1+λ

)θ
e−(λxi)

β
xβ−1
i

1− (1− α)
(

1+λ+λxi
1+λ

)θ
e−(λxi)β

∂ logL

∂γ
=

n

γ
+ nlogα +

nαγlogα

1− αγ
−

n∑
i=1

log

[
1− (1− α)

(
1 + λ+ λxi

1 + λ

)θ
e−(λxi)

β

]

∂ logL

∂λ
=

n

λ
+

(θ − 1)(1 + xi)

1 + λ+ λxi
+

n∑
i=1

1 + xi
1 + λ+ λxi

+ (β − 1)n
n∑
i=1

xi
λxi

+ βλβ−1

n∑
i=1

xβi −
nθ

1 + λ
+ (γ + 1)

n∑
i=1

1

1− (1− α)
(

1+λ+λxi
1+λ

)θ
e−(λxi)β[

(1− α)

{
−
(

1 + λ+ λxi
1 + λ

)θ
e−(λxi)

β

βxβi λ
β−1 + θ

[
1 + λ+ λxi

1 + λ

]θ−1
xie
−(λxi)

β

(1 + λ)2

}]

∂ logL

∂θ
= log(1 + λ+ λxi)−

n

θ
− nlog(1 + λ)

− (γ + 1)(1− α)
n∑
i=1

(
1+λ+λxi

1+λ

)θ
log
(

1+λ+λxi
1+λ

)
e−(λxi)

β

1− (1− α)
(

1+λ+λxi
1+λ

)θ
e−(λxi)β

The maximum likelihood estimates can be obtained by solving the equations ∂ logL
∂α

=
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Table 8.1: Estimates,-log likelihood and K-S statistic for the data

Model Parameter Estimates -log likelihood k-s statistic
NBESMOEL α 2.8352 128.32 0.7624

β 0.1736
γ 0.8722
λ 1.5481
θ 0.2915

EL β 0.2044 131.14 0.8531
λ 1.3956
θ 0.0119

0, ∂ logL
∂β

= 0, ∂ logL
∂γ

= 0, ∂ logL
∂λ

= 0, ∂ logL
∂θ

= 0. The equations can be solved using nlm

package in R software.

8.7 Data Analysis

In this section we analyze a data set and compare Negative Binomial Extreme Stable

Marshall-Olkin Extended Lindley distribution with Extended Lindley distribution. We con-

sider data from Linhart and Zucchini (1986). The following data are failure times of the air

conditioning system of an airplane: 23, 261, 87, 7, 120, 14, 62, 47, 225, 71, 246, 21, 42,

20, 5, 12, 120, 11, 3, 14, 71, 11, 14, 11, 16, 90, 1, 16, 52, 95.

Extended Lindley distribution with parameters β, λ and θ and Negative Binomial Ex-

treme Stable Marshall-Olkin Extended Lindley distribution with parameters α, β, γ, λ and

θ are fitted to the data. The results are presented in Table 8.1. The QQ plots for the two

distributions are shown in Figure 8.7. From Table 8.1, it is seen that the K-S statistic for the

NBESMOEL distribution is 0.7624 which is less than that for the EL distribution. Similar is

the case with log likelihood values. The Q-Q plot also confirm that the new distribution fits

well than the original EL distribution. Hence we conclude that NBESMOEL distribution is

a better model for the data set.
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Figure 8.3: QQ plot for NBESMOEL and EL Distribution

8.8 Conclusion

In this chapter we proposed a new distribution namely, Negative Binomial Extreme Stable

Marshall-Olkin Extended Lindley distribution. Its properties are obtained. Record values

and estimation of parameters are also discussed. We analyze a real data set and compare

the goodness of fit to NBESMOEL with EL distribution. We conclude that NBESMOEL

distribution is a better fit. The results are given in Table 8.1.
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CHAPTER 9

Reliability Test Plan for Negative

Binomial Extreme Stable Marshall- Olkin

Pareto Distribution

9.1 Introduction

A wide variety of socioeconomic data have distributions which are heavy tailed and

reasonably fitted by Pareto distribution. Pareto distribution is used to analyze the stock

price fluctuations, insurance risks, business failures etc. Davis and Feldstin (1979) intro-

duced Pareto distribution as a model for survival data. Pareto distribution can be consid-

ered as a lifetime distribution and is shown to be a decreasing failure rate model. Addel-

Ghaly et al.[1998] discussed estimation of the parameters of Pareto distribution and reli-

ability function using accelerated life testing with censoring, Kulldorff and Vannman[1973]
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studied estimation of the location and scale parameters of a Pareto distribution by linear

functions of order statistics, Vannman[1976] introduced estimators based on order statis-

tics from a Pareto distribution. Alice and Jose (2003) introduced Marshall-Olkin extended

semi Pareto model for Pareto type III and established its geometric extreme stability. Ghi-

tany(2005) introduced Marshall-Olkin extended Pareto distribution.

Acceptance sampling plan is an inspection procedure used to determine whether to

accept or reject a specific quantity of material. Many authors studied about acceptance

sampling plan based on life tests. Kantam and Rosaiah(1998) proposed half logistic dis-

tribution in acceptance sampling based on life tests, Kantam et al.(2001) developed ac-

ceptance sampling based on life tests: log-logistic model, Rosaiah et al.(2009) discussed

Pareto distribution in acceptance sampling based on truncated life test, Srinivasa Rao et

al.(2008) introduced acceptance sampling plans for Marshall-Olkin extended Lomax dis-

tribution. Baklizi(2003) proposed acceptance sampling based on truncated life tests in

the Pareto distribution of the second kind. Srinivasa Rao and Kantam(2010) introduced

acceptance sampling plans from truncated life tests based on log-logistic distribution for

percentiles. Rosaiah et al.(2008) discussed an economic reliability test plan with Inverse

Rayleigh variates. Krishna et.al (2013a,b) introduced Marshall-Olkin Frèchet distribution

and its applications in reliability, sampling plan etc.

In this chapter a new distribution namely Negative Binomial Extreme Stable Marshall-

Olkin Pareto distribution is introduced. The properties are also considered. A reliability

test plan is developed for products with lifetime following the new distribution. Minimum

sample size required is determined to assure a minimum average life needed when the life

test is terminated at a pre assigned time t such that the observed number of failures does

not exceed a given acceptance number c. The operating characteristic values and the

minimum value of the ratio of true average life to required average life for various sampling

plans are tabulated.
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9.2 Negative Binomial Extreme Stable Marshall-Olkin Pareto Distri-

bution

In this section we consider the survival function of Pareto distribution F (x, σ, θ) = (x
σ
)−θ;σ >

0 and introduce a Negative Binomial Extreme Stable Marshall-Olkin Pareto distribution us-

ing negative binomial extreme stability. The survival function is given by

Ḡ(x) =
αγ

1− αγ

{[
1− α

(x
σ

)−θ]−γ
− 1

}

for x > 0, α > 0, σ > 0, θ > 0 and α = 1− α.

Then the corresponding probability density function of the new distribution is given by

g(x;α, γ, σ, θ) =
(1− α)γαγθσθx−(θ+1)

(1− αγ)
[
1− α

(
x
σ

)−θ]γ+1 ; (9.2.1)

where x > 0, α > 0, γ > 0, σ > 0, θ > 0. We denote it as NBESMOP(α, γ, σ, θ).

When γ = 1 then NBESMOP distribution reduces to Marshall-Olkin Pareto distribu-

tion. The cumulative distribution function is

G(x) = 1− αγ

1− αγ

{[
1− α

(x
σ

)−θ]−γ
− 1

}
(9.2.2)

Figure 9.1 shows the pdf of NBESMOP for different combinations of parameter values.
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Figure 9.1: The p.d.f. of NBESMOP for different combinations of parameter value

The hazard rate function of the new distribution function is given by

h(x;α, γ, σ, θ) =
(1− α)γαγθσθx−(θ+1)[

1− α
(
x
σ

)−θ]{
1−

[
1− α

(
x
σ

)−θ]γ} (9.2.3)

for x > 0, α > 0, β > 0, γ > 0.

When γ = 1 the hazard rate function reduces to Marshall-Olkin Pareto distribution.

The pth quantile function of the distribution, which is the inverse of the distribution

function F (xp) = p is given by

xp =

[
ασθ[1 + αγ(1− p)]

1
γ

[1 + αγ(1− p)]
1
γ + α

] 1
θ

Figure 9.2 shows the hazard rate function for different values of parameters.
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Figure 9.2: Hazard rate function of NBESMOP for different values of parameters

9.3 Reliability Test Plan

Assume that the life time of the product follows Negative Binomial Extreme Stable Marshall-

Olkin Pareto distribution with scale parameter σ and the corresponding density function

and cumulative distribution function is given in (9.2.1) and (9.2.2). In life testing experi-

ments, the test is to terminate at a pre-determined time ’t’ and note the number of failures.

The decision to accept the lot is made if and only if the number of observed failures at

the end of the fixed time t does not exceed a given number c, which is called the accep-

tance number, with a given probability p∗. The test may be terminated before the time t

is reached, when the already observed number of failures exceeds c, in which case the

decision is to reject the lot. For such a truncated life test and the associated decision rule,

we are interested in obtaining the smallest sample size necessary to achieve the objective.

In this distribution, the average life time depends only on σ, if α, γ and θ are known.
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Let σ0 be the required minimum average life time, then

G(x, α, γ, θ, σ) = G(x, α, γ, θ, σ0)⇐⇒ σ ≥ σ0

A sampling plan consists of the following quantities:

1. The number of units n on test,

2. The acceptance number c,

3. The maximum test duration t, and

4. The ratio t/σ0, where σ0 is the specified average life.

The consumer’s risk, i.e., the probability of accepting a bad lot should not exceed the

value 1 − p∗ where p∗ is a lower bound for the probability that a lot of true value σ below

σ0 is rejected by the sampling plan. For fixed p∗ the sampling plan is characterized by

(n, c, t/σ0). For sufficiently large lots, we can apply binomial distribution for calculating

the acceptance probability. The problem is to determine the smallest positive integer n for

given values of c and t/σ0 such that:

L(p0) =
c∑
i=0

(
n

i

)
pi0(1− p0)n−i ≤ 1− p∗ (9.3.1)

where p0 = G(t;α, γ, θ, σ0). The function L(p) is the operating characteristic function

of the sampling plan, i.e. the acceptance probability of the lot as a function of the failure

probability p(σ) = G(t;α, γ, θ, σ). The average lifetime of the products is increasing with

σ and, therefore, the failure probability p(σ) decreases with increasing σ implying that the

operating characteristic function is increasing in σ. The minimum values of n satisfying

(9.3.1) are obtained for α = 2, γ = 2, θ = 2, p∗ = 0.75, 0.90, 0.95, 0.99 and t/σ0 =

2.214, 2.356, 2.556, 2.788, 3.102, 3.141, 3.408 . The results are given in Table 9.1.
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If p = G(t;α, γ, θ, σ) is small and n is large, the binomial probability may be approxi-

mated by Poisson probability with parameter λ = np so that the left side of (9.3.1) can be

written as

L∗(p0) =
c∑
i=0

λi

i!
e−i ≤ 1− p∗ (9.3.2)

where λ = nG(t;α, γ, θ, σ0). The minimum values of n satisfying (9.3.2) are obtained

for the same combination of values as in the binomial case. The results are given in Table

9.2.

For a given value of p∗ and t/σ0, the values of n and c are determined by means of

the operating characteristic function. For some sampling plans, the values of the operating

characteristic function depending on σ/σ0 are displayed in Table 9.3.

The producers risk is the probability of rejection of the lot when σ ≥ σ0. We can

compute the producers risk by first finding p = G(t;α, γ, σ, θ) and then using the binomial

distribution function. For a specified value of the producers risk say 0.05, one may be

interested in knowing what value of σ or σ
σ0

will ensure a producers risk less than or equal

to 0.05 for a given sampling plan. The value of σ and, hence, the value of σ
σ0

is the smallest

positive number for which the following inequality holds

L(p0) =
c∑
i=0

(
n

i

)
pi0(1− p0)n−i ≥ 0.95 (9.3.3)

For some sampling plans (n, c, t
σ0

) and values of p∗, minimum values of σ
σ0

satisfying

(9.3.3) are given in Table 9.4.

9.4 Description of the Tables and Their Application

Assume that the lifetime distribution is Negative Binomial Extreme Stable Marshall-Olkin

Pareto distribution with α = 2, θ = 2 and γ = 2. Suppose that the experimenter is
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interested in establishing that the true unknown average life is at least 1000 hours with

confidence p∗ = 0.75. It is desired to stop the experiment at t = 2214hrs. Then, for an

acceptance number c = 2, the required n in Table 9.1 is 6. If during 2214 hrs, no more

than 2 failures out of 6 are observed, then the experimenter can assert, with a confidence

level of 0.75 that the average life is at least 1000hrs. If the Poisson approximation to

binomial probability is used, the value of n from Table 2 is 6. For this sampling plan

(n = 6, c = 2, t/σ0 = 2.214) under the Negative Binomial Extreme Stable Marshall-Olkin

Pareto distribution the operating characteristic values from Table 9.3 are

σ
σ0

1.2 1.4 1.6 1.8 2.0 2.2

L(p) 0.4149 0.653 0.8429 0.9527 0.9939 0.9999

From Table 9.4, we can get the value of σ
σ0

for various choices of c, σ
σ0

in order that the

producers risk may not exceed 0.05. Thus in the above example the value of σ
σ0

is 1.79 for

c = 2, σ
σ0

= 2.214, p* = 0.75. That is, the product should have an average life of 1.79 times

the specified mean life of 1000 hrs in order that under the above acceptance sampling

plan, the product is accepted with probability 0.95. The actual average life necessary to

accept 95% of the lots is provided by Table 9.4.

Consider the following ordered failure times of the release of a software in terms of

hours from starting of the execution of the software up to the time at which a failure of

the software occurs (Wood(1996)). This data can be regarded as an ordered sample of

size n = 16 with observations {xi, i = 1, 2, ...16} = {519, 968, 1430,1893,2490, 3058,

3625,4422, 5218, 5823, 6539, 7083, 7487, 7846, 8205, 8564}.

Let the required average life time be 1000 hours and the testing time be t = 2214

hours. This leads to the ratio t
σ0

= 2.214 with a corresponding sample size n = 16 and

an acceptance number c=4, which can be obtained from Table 9.1 for p∗ = 0.99. The

sampling plan for the above sample data is (n = 16, c = 4, t
σ0

= 2.214). Based on the

observations we have to decide whether to accept the product or reject it. We accept the

product only if the number of failures before 2214 hours is less than or equal to 4. In the
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sample of 16 failure time instants, there is 4 failure hours before the termination t = 2214

hours. Hence we accept the product.

9.5 Conclusion

In this chapter, we have considered the generalization of the Marshall-Olkin family of dis-

tributions using negative binomial compounding instead of geometric compounding. The

newly obtained generalized distribution is the Negative Binomial Extreme Stable Marshall-

Olkin Pareto distribution. Also a reliability test plan is developed when the life times of the

items follow NBESMOP distribution. The results are illustrated by a numerical example.

Table 9.1 gives minimum sample size for the specified ratio t
σ0

, confidence level p∗, accep-

tance number c, α = 2, θ = 2 and γ = 2 using binomial approximation. Table 9.2 gives

minimum sample size for the specified ratio t
σ0

, confidence level p∗, acceptance number

c, α = 2, θ = 2 and γ = 2 using Poisson approximation. Table 9.3 gives values of the

operating characteristic function of the sampling plan (n, c, t
σ0

for given confidence level p∗

with α = 2, θ = 2 and γ = 2. Table 9.4 gives Minimum ratio of true σ and required σ0 for

the acceptability of a lot with producer’s risk of 0.05 for α = 2, θ = 2 and γ = 2.
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Table 9.1: Minimum sample size for the specified ratio t/σ0, confidence level p∗, ac-
ceptance number c, α = 2, θ = 2 and γ = 2 using binomial approximation.

p* c t/σ0
2.214 2.356 2. 556 2.788 3.102 3.141 3.408

.75 0 3 2 2 2 1 1 1

.75 1 4 4 4 3 3 3 3

.75 2 6 6 5 5 4 4 4

.75 3 8 7 7 6 6 6 6

.75 4 10 9 9 8 7 7 7

.75 5 12 11 10 9 9 9 8

.75 6 14 13 12 11 10 10 10

.75 7 15 14 13 12 12 11 11

.75 8 17 16 15 14 13 13 12

.75 9 19 18 17 15 14 14 14

.75 10 21 20 18 17 16 16 15

.90 0 4 3 3 2 2 2 2

.90 1 5 5 5 4 4 4 4

.90 2 8 7 6 6 5 5 5

.90 3 10 9 8 8 7 7 7

.90 4 12 11 10 9 8 8 8

.90 5 14 13 12 11 10 10 9

.90 6 16 15 13 12 11 11 11

.90 7 18 17 15 14 13 13 12

.90 8 20 18 17 16 14 14 14

.90 9 22 20 19 17 16 16 15

.90 10 24 22 20 19 17 17 16

.95 0 4 4 3 3 3 3 2

.95 1 6 6 5 5 4 4 4

.95 2 9 8 7 7 6 6 6

.95 3 11 10 9 8 8 8 7

.95 4 13 12 11 10 9 9 9

.95 5 15 14 13 12 11 11 10

.95 6 17 16 15 13 12 12 12

.95 7 19 18 16 15 14 14 13

.95 8 21 20 18 17 15 15 14

.95 9 23 22 20 18 17 17 16

.95 10 25 24 22 20 18 18 17

.99 0 6 5 5 4 4 4 3

.99 1 9 8 7 6 6 6 5

.99 2 11 10 9 8 8 7 7

.99 3 14 12 12 10 9 9 9

.99 4 16 15 13 12 11 11 10

.99 5 18 17 15 14 13 12 12

.99 6 20 19 17 16 14 14 13

.99 7 23 21 19 17 16 16 15

.99 8 25 23 21 19 17 17 16

.99 9 27 25 23 21 19 19 18

.99 10 29 27 24 22 21 20 19
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Table 9.2: Minimum sample size for the specified ratio t/σ0, confidence level p∗, ac-
ceptance number c, α = 2, θ = 2 and γ = 2 using Poisson approximation.

p* c t/σ0
2.214 2.356 2.556 2.788 3.102 3.141 3.408

0.75 0 2 2 2 2 1 1 1
0.75 1 4 4 4 3 3 3 3
0.75 2 6 6 5 5 4 4 4
0.75 3 8 7 7 6 6 6 6
0.75 4 11 9 9 8 7 7 7
0.75 5 12 11 10 9 9 9 8
0.75 6 14 13 12 11 10 10 10
0.75 7 15 14 13 12 12 11 11
0.75 8 17 16 15 14 13 13 12
0.75 9 19 18 17 15 14 14 14
0.75 10 21 20 18 17 16 16 15
0.9 0 3 3 3 2 2 2 2
0.9 1 5 5 5 4 4 4 4
0.9 2 8 7 6 6 5 5 5
0.9 3 10 9 8 8 7 7 7
0.9 4 12 11 10 9 8 8 8
0.9 5 14 13 12 11 10 10 9
0.9 6 16 15 13 12 11 11 11
0.9 7 18 17 15 14 13 13 12
0.9 8 20 18 17 16 14 14 14
0.9 9 22 20 19 17 16 16 15
0.9 10 24 22 20 19 17 17 16
0.95 0 4 4 3 3 3 3 2
0.95 1 6 6 5 5 4 4 4
0.95 2 9 8 7 7 6 6 6
0.95 3 11 10 9 8 8 8 7
0.95 4 13 12 11 10 9 9 9
0.95 5 15 14 13 12 11 11 10
0.95 6 17 16 15 13 12 12 12
0.95 7 19 18 16 15 14 14 13
0.95 8 21 20 18 17 15 15 14
0.95 9 23 22 20 18 17 17 16
0.95 10 25 24 22 20 18 18 17
0.99 0 6 5 5 4 4 4 3
0.99 1 9 8 7 6 6 6 5
0.99 2 11 10 9 8 8 7 7
0.99 3 14 12 11 10 9 9 9
0.99 4 16 15 13 12 11 11 10
0.99 5 18 17 15 14 13 12 12
0.99 6 20 19 17 16 14 14 13
0.99 7 23 21 19 17 16 16 15
0.99 8 25 23 21 19 17 17 16
0.99 9 27 25 23 21 19 19 18
0.99 10 29 27 24 22 21 20 19
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Table 9.3: Values of the operating characteristic function of the sampling
plan(n, c, t/σ0) for a given p∗ with α = 2, θ = 2 and γ = 2.

p* n c t/σ0 σ/σ0
1.2 1.4 1.6 1.8 2.0 2.2

0.75 6 2 2.214 0.4149 0.653 0.8429 0.9527 0.9939 0.9999
0.75 6 2 2.356 0.3302 0.5549 0.7605 0.9032 0.9756 0.9981
0.75 5 2 2.556 0.3852 0.5828 0.7575 0.8829 0.9565 0.9897
0.75 5 2 2.788 0.2901 0.468 0.6453 0.7936 0.8987 0.9607
0.75 4 2 3.102 0.3916 0.5472 0.6897 0.8056 0.891 0.9452
0.75 4 2 3.141 0.3801 0.534 0.6766 0.7942 0.8813 0.9393
0.75 4 2 3.408 0.3097 0.4499 0.5895 0.7143 0.8157 0.8909
0.9 8 2 2.214 0.1982 0.4348 0.6982 0.8949 0.9847 .9999
0.9 7 2 2.356 0.2148 0.431 0.6671 0.8549 0.961 0.9968
0.9 6 2 2.556 0.2359 0.4302 0.6371 0.8103 0.9246 0.9811
0.9 6 2 2.788 0.1581 0.3123 0.5004 0.6852 0.8339 0.9314
0.9 5 2 3.102 0.197 0.3402 0.5028 0.6601 0.7922 0.8891
0.9 5 2 3.141 0.1877 0.3267 0.4865 0.6435 0.7776 0.878
0.9 5 2 3.408 0.1351 0.2465 0.3852 0.5341 0.6749 0.7936
0.95 9 2 2.214 0.1316 0.3441 0.6229 0.8592 0.9783 0.9999
0.95 8 2 2.356 0.1351 0.3261 0.5743 0.8007 0.9429 0.9951
0.95 7 2 2.556 0.1379 0.3056 0.5201 0.73 0.8852 0.9695
0.95 7 2 2.788 0.0818 0.1995 0.3747 0.5763 0.7607 0.895
0.95 6 2 3.102 0.0917 0.1977 0.3465 0.5176 0.6831 0.8194
0.95 6 2 3.141 0.0857 0.1867 0.3303 0.4983 0.6638 0.8032
0.95 6 2 3.408 0.0543 0.1254 0.2359 0.3785 0.5352 0.685
0.99 11 2 2.214 0.0548 0.2058 0.4801 0.7789 0.9617 0.9999
0.99 10 2 2.356 0.0498 0.1756 0.4067 0.683 0.8975 0.9902
0.99 9 2 2.556 0.0428 0.1417 0.3259 0.5657 0.7905 0.9377
0.99 8 2 2.788 0.0407 0.1234 0.2728 0.4743 0.6838 0.8529
0.99 8 2 3.102 0.0171 0.0584 0.1465 0.2891 0.4717 0.6613
0.99 7 2 3.141 0.037 0.1015 0.2149 0.3724 0.5514 0.7208
0.99 7 2 3.408 0.0206 0.0605 0.1379 0.2575 0.4104 0.57608
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Table 9.4: Minimum ratio of true σ and required σ0 for the acceptability of a lot with
producer’s risk of 0.05 for α = 2, θ = 2 and γ = 2

p* c t/σ0
2.214 2.356 2.556 2.788 3.102 3.141 3.408

.75 0 2.16 2.27 2.46 2.69 2.88 2.92 3.17

.75 1 1.93 2.05 2.23 2.31 2.58 2.61 2.83

.75 2 1.79 1.91 1.98 2.16 2.24 2.26 2.46

.75 3 1.71 1.75 1.90 1.94 2.16 2.19 2.38

.75 4 1.65 1.69 1.83 1.90 1.98 2.00 2.17

.75 5 1.60 1.64 1.72 1.78 2.00 2.03 2.04

.75 6 1.56 1.62 1.69 1.76 1.86 1.89 2.04

.75 7 1.51 1.54 1.61 1.67 1.88 1.78 1.93

.75 8 1.47 1.52 1.59 1.67 1.78 1.81 1.96

.75 9 1.45 1.50 1.59 1.60 1.78 1.81 1.87

.75 10 1.45 1.50 1.53 1.62 1.71 1.73 1.80

.90 0 2.17 2.30 2.50 2.69 2.99 3.03 3.28

.90 1 1.99 2.12 2.30 2.45 2.73 2.76 3.00

.90 2 1.89 1.90 2.08 2.27 2.43 2.46 2.67

.90 3 1.80 1.89 1.97 2.15 2.31 2.33 2.53

.90 4 1.73 1.82 1.90 2.02 2.14 2.16 2.35

.90 5 1.69 1.75 1.85 1.90 2.08 2.11 2.17

.90 6 1.65 1.71 1.76 1.85 1.98 2.00 2.17

.90 7 1.60 1.66 1.74 1.83 1.95 1.98 2.07

.90 8 1.58 1.60 1.69 1.80 1.86 1.87 2.04

.90 9 1.54 1.58 1.67 1.73 1.86 1.87 1.96

.90 10 1.52 1.56 1.63 1.73 1.81 1.83 1.88

.95 0 2.18 2.32 2.50 2.73 3.04 3.08 3.30

.95 1 2.03 2.16 2.31 2.52 2.73 2.76 3.00

.95 2 1.93 2.02 2.16 2.34 2.52 2.55 2.77

.95 3 1.85 1.92 2.05 2.15 2.40 2.43 2.53

.95 4 1.78 1.84 1.97 2.07 2.22 2.25 2.44

.95 5 1.71 1.8 1.90 2.02 2.19 2.22 2.29

.95 6 1.67 1.75 1.85 1.92 2.06 2.08 2.24

.95 7 1.63 1.71 1.78 1.90 2.03 2.06 2.15

.95 8 1.60 1.69 1.74 1.85 1.95 1.98 2.07

.95 9 1.58 1.64 1.72 1.80 1.93 1.95 2.04

.95 10 1.54 1.62 1.69 1.78 1.86 1.88 1.99

.99 0 2.19 2.32 2.52 2.74 3.05 3.09 3.33

.99 1 2.09 2.21 2.34 2.56 2.84 2.88 3.08

.99 2 1.99 2.10 2.25 2.39 2.66 2.65 2.88

.99 3 1.92 1.99 2.16 2.27 2.45 2.52 2.73

.99 4 1.85 1.94 2.05 2.18 2.40 2.39 2.53

.99 5 1.80 1.89 1.97 2.13 2.31 2.28 2.47

.99 6 1.75 1.84 1.92 2.07 2.19 2.22 2.35

.99 7 1.73 1.80 1.88 1.99 2.16 2.19 2.32

.99 8 1.69 1.75 1.85 1.94 2.08 2.11 2.20

.99 9 1.67 1.73 1.83 1.92 2.03 2.06 2.17

.99 10 1.63 1.71 1.76 1.85 2.03 2.00 2.14
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CHAPTER 10

Negative Binomial Marshall- Olkin

Rayleigh Distribution and its Applications

10.1 Introduction

Rayleigh distribution is one of the most popular distributions in analyzing skewed data.

The Rayleigh distribution was originally proposed in the fields of acoustics and optics. It

is used in oceanography and in communication theory for describing instantaneous peak

power of received radio signals. This distribution has also been applied in several ar-

eas such as health, agriculture, biology etc. Rayleigh distribution is a special case of

the two-parameter Weibull distribution with the shape parameter equal to two. Surles

and Padgett(2001) introduced two-parameter Burr Type X distribution and named it as the

generalized Rayleigh distribution. The two-parameter generalized Rayleigh distribution is

a particular member of the generalized Weibull distribution, proposed by Mudholkar and

Srivastava(1993). Cordeiro et al. (2013) and Gomes et al. (2014) introduced two general-
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izations for the Generalized Rayleigh distribution: the four-parameter beta-GR distribution

and the four-parameter Kumaraswamy-GR distribution. Many authors have proposed var-

ious univariate distributions belonging to the Marshall-Olkin family of distributions such

as Alice and Jose(2003), Ghitany et al.(2007), Jayakumar and Thomas(2008), Garcia et

al.(2010), Ghitany et al.(2012), Krishna et al (2013). General properties of the MOE family

of distributions were studied recently by Barreto-Souza et al. (2013) and Cordeiro et al.

(2014).

Acceptance sampling plan is an inspection procedure used to determine whether to

accept or reject a specific quantity of material. Many authors studied about acceptance

sampling plan based on life tests. Kantam and Rosaiah(1998) proposed half logistic dis-

tribution in acceptance sampling based on life tests, Kantam et al.(2001) developed ac-

ceptance sampling based on life tests: log-logistic model, Rosaiah et al.(2009) discussed

Pareto distribution in acceptance sampling based on truncated life test, Srinivasa Rao et

al.(2008) introduced acceptance sampling plans for Marshall-Olkin extended Lomax distri-

bution. Rosaiah et al.(2005) discussed an acceptance sampling plan based on the Inverse

Rayleigh distribution. Krishna et.al (2013a,b) introduced Marshall-Olkin Frèchet distribu-

tion and its applications in reliability, sampling plan etc. Tsai and Wu (2006) considered

the problem of acceptance sampling plan based on truncated life tests when the lifetime

of product follows the generalized Rayleigh distribution for known shape parameter. Kan-

tam et al.(2013) proposed economic reliability test plans based on Rayleigh distribution.

Singh et al.(2013) discussed acceptance sampling plan based on truncated life tests for

compound Rayleigh distribution.

In this chapter we discuss Negative Binomial Marshall-Olkin Rayleigh Distribution and

its Applications. Quantiles and order statistics of the distribution are obtained. We de-

veloped the reliability test plan for the distribution. Minimum sample size required is de-

termined to assure a minimum average life needed when the life test is terminated at a

pre-assigned time t such that the observed number of failures does not exceed a given

acceptance number c. The operating characteristic values and the minimum value of the
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ratio of true average life to required average life for various sampling plans are tabulated.

10.2 Negative Binomial Marshall-Olkin Rayleigh Distribution

In this section we consider the survival function of Rayleigh distribution F (x, σ) = exp
(
−x2
2σ2

)
.

From negative binomial extreme stable family, we introduce a Negative Binomial Marshall-

Olkin Rayleigh distribution given by the survival function

Ḡ(x) =
αγ

1− αγ

{[
1− ᾱ exp

(
−x2

2σ2

)]−γ
− 1

}
(10.2.1)

for x > 0, α > 0, σ > 0, γ > 0 and ᾱ = 1− α.

Then the corresponding probability density function of the new distribution is

g(x;α, γ, σ) =
(1− α)γαγ x

σ2 exp
(
−x2
2σ2

)
(1− αγ)

[
1− α exp

(−x2
2σ2

)]γ+1 ; (10.2.2)

where x > 0, α > 0, γ > 0, σ > 0. We denote it as NBMOR(α, γ, σ).

When γ = 1 then NBMOR distribution reduces to Marshall-Olkin Rayleigh distribution.

The cumulative distribution function is

G(x) = 1− αγ

1− αγ

{[
1− α exp

(
−x2

2σ2

)]−γ
− 1

}
(10.2.3)

Figure 10.1 shows the pdf of NBMOR for different combinations of parameter values.
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Figure 10.1: The p.d.f. of NBMOR for different values of parameters

The hazard rate function of the new distribution function is

h(x;α, γ, σ) =
(1− α)γ x

σ2 exp
(
−x2
2σ2

)
[1− ᾱ exp

(−x2
2σ2

)
][1− (1− ᾱ exp

(−x2
2σ2

)
)γ]

(10.2.4)

for x > 0, α > 0, γ > 0, σ > 0.

When γ = 1 the hazard rate function reduces to Marshall-Olkin Rayleigh distribution.

10.3 Quantiles and Order Statistics

The pth quantile function of the distribution, the inverse of the distribution function F (xp) =

p, is given by

x =

(
2σ2log

[
ᾱ(1− p+ pαγ)

1
γ

(1− p+ pαγ)
1
γ − α

]) 1
2

Let X1, X2, ..., Xn be a random sample taken from the NBMOR distribution and

X1:n, X2:n, ..., Xn:n be the corresponding order statistics. The survival function of NBMOR
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distribution is given by (10.2.1). Then the c.d.f. of the first order statistic X1:n is given by

G1:n(x) = 1− (Ḡ(x))n

= 1− αnγ(−1)n

(1− αγ)n
n∑
k=0

(−1)k
(
n

k

)[
1− ᾱ exp

(
−x2

2σ2

)]−γk

The c.d.f. of the nthorder statistic Xn:nis given by

Gn:n(x) = [1− Ḡ(x)]n

=
1

(1− αγ)n
n∑
k=0

(−1)k
(
n

k

)
αγk[

1− ᾱ exp
(−x2

2σ2

)]−γk
The probability density function gi:n(x) of the ith order statistics Xi:n is given by

gi:n(x;α, γ, σ) =
n!

(i− 1)!(n− 1)!

(1− α)γαγ x
σ2 exp

(
−x2
2σ2

)
(1− αγ)

[
1− ᾱ exp

(−x2
2σ2

)]γ+1[
1− αγ

1− αγ

{[
1− ᾱ exp

(
−x2

2σ2

)]−γ
− 1

}]i−1

[
αγ

1− αγ

{[
1− ᾱ exp

(
−x2

2σ2

)]−γ
− 1

}]n−i

This can be written as a finite mixture of the probability density functions of NBMOR

distributed random variables since

gi:n(x;α, γ, σ) =
n!(−1)n−i

(i− 1)!(n− 1)!

αγ(n−i)

(1− αγ)n
i−1∑
r=0

n−i∑
s=0

(
i− 1

r

)(
n− i
s

)
(−1)r+s[1− αγ(r+s+1)]

αs(r + s+ 1)
g(x;α, γ(r + s+ 1), σ)
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10.4 Estimation of Parameters

In this section we consider maximum likelihood estimation with respect to a given sample

(x1, x2, ..., xn). Then the log likelihood function is given by

logL = nlog(1− α) + nlogγ + nγlogα +
n∑
i=0

log(
xi
σ2n

) +
n∑
i=0

x2
i

2σ2
−

nlog(1− αγ)− (γ + 1)
n∑
i=0

log[1− ᾱ exp(
−x2

i

2σ2
)]

Taking partial derivatives with respect to parameters we get,

∂ logL

∂α
=

−n
1− α

+
nγ

α
− nγαγ−1

1− αγ
− (γ + 1)

n∑
i=0

exp(
−x2i
2σ2 )

[1− ᾱ exp(
−x2i
2σ2 )]

∂ logL

∂γ
=

n

γ
+ n log(α)− n

1− αγ
αγlog(α) +

n∑
i=0

log[1− ᾱ exp(
−x2

i

2σ2
)]

∂ logL

∂σ
=
−2n2

σ
+

n∑
i=0

x2
i

σ3
− (γ + 1)

n∑
i=0

ᾱx2
i exp(

−x2i
2σ2 )

σ3[1− ᾱ exp(
−x2i
2σ2 )]

The maximum likelihood estimates can be obtained by solving the equations
∂ logL
∂α

= 0,∂ logL
∂γ

= 0,∂ logL
∂σ

= 0. The equations can be solved using nlm function in R

software.
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Table 10.1: Estimates, AIC , BIC and K-S statistic for the data set

Model Parameter Estimates AIC BIC K-S statistic

NBMOR α 0.1019 2571.586 2526.142 0.7532
γ 0.0992
σ 0.0619

Rayleigh σ 0.0019 2617.55 2614.402 0.8914

10.4.1 Data Analysis

In this section we consider a data analysis. The data represents an uncensored data set

corresponding to remission times (in months) of a random sample of 128 bladder cancer

patients reported in Lee and Wang(2003). 0.08, 2.09, 3.48, 4.87, 6.94, 8.66, 13.11, 23.63,

0.20, 2.23, 3.52, 4.98, 6.97, 9.02, 13.29, 0.40, 2.26, 3.57, 5.06, 7.09, 9.22, 13.80, 25.74,

0.50, 2.46, 3.64, 5.09, 7.26, 9.47, 14.24, 25.82, 0.51, 2.54, 3.70, 5.17, 7.28, 9.74, 14.76,

26.31, 0.81, 2.62, 3.82, 5.32, 7.32, 10.06, 14.77, 32.15, 2.64, 3.88, 5.32,7.39 ,10.34,

14.83, 34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66, 15.96 ,36.66, 1.05, 2.69, 4.23, 5.41,

7.62, 10.75, 16.62, 43.01, 1.19, 2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 1.26, 2.83, 4.33,7.66

,11.25, 17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 11.64, 17.36,1.40 ,3.02 ,4.34, 5.71, 7.93,

11.79, 18.10, 1.46, 4.40, 5.85,8.26 ,11.98 ,19.13, 1.76, 3.25, 4.50, 6.25, 8.37, 12.02,

2.02,3.31 ,4.51 ,6.54, 8.53, 12.03, 20.28, 2.02, 3.36, 6.76, 12.07,21.73, 2.07, 3.36, 6.93,

8.65, 12.63, 22.69, 5.49

We compare the goodness of fit of NBMOR and Rayleigh distributions. For that we

estimate the parameters by the the method of maximum likelihood and fit both distributions

to the data. The maximum likelihood estimates, AIC and BIC values, and K-S statistic are

given in Table 10.1. From Table 10.1, it is seen that the smallest AIC and BIC values are

obtained in NBMOR distribution. Hence we conclude that NBMOR distribution is a better

model for the data set.
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10.5 Reliability Test Plan

Let a lot of products of infinitely large size be submitted for sampling inspection and deci-

sion to reject or accept.Assume that the life time of the product follows Negative Binomial

Marshall-Olkin Rayleigh distribution with scale parameter σ and the corresponding density

function and cumulative distribution function is given in (10.2.2) and (10.2.3). In life testing

experiment the test is to terminate at a predetermined time ’t’ and note the number of fail-

ures. The decision to accept the lot is made if and only if the number of observed failures

at the end of the fixed time t does not exceed a given number c, which is called the ac-

ceptance number, with a given probability p∗. The test may be terminated before the time

t is reached, when the already observed number of failures exceeds c, in which case the

decision is to reject the lot. For such a truncated life test and the associated decision rule,

we are interested in obtaining the smallest sample size necessary to achieve the objective.

In this distribution the average life time depends only on σ, if α and γ are known. Let

σ0 be the required minimum value of σ, then

G(x, α, γ, σ) = G(x, α, γ, σ0)⇐⇒ σ ≥ σ0

A sampling plan consists of the following quantities:

1. The number of units n on test,

2. The acceptance number c,

3. The maximum test duration t, and

4. The ratio t/σ0, where σ0 is the specified average life.

The consumer’s risk, i.e., the probability of accepting a bad lot should not exceed the

value 1 − p∗ with p∗ is a lower bound for the probability that a lot of true value σ below
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σ0 is rejected by the sampling plan. For fixed p∗ the sampling plan is characterized by

(n, c, t/σ0). By sufficiently large lots we can apply binomial distribution for calculating the

acceptance probability. The problem is to determine the smallest positive integer n for

given values of c and t/σ0 such that:

L(p0) =
c∑
i=0

(
n

i

)
pi0(1− p0)n−i ≤ 1− p∗ (10.5.1)

where p0 = G(t;α, γ, σ0). The function L(p) is the operating characteristic func-

tion of the sampling plan, i.e. the acceptance probability of the lot as a function of the

failure probability p(σ) = G(t;α, γ, σ). The average lifetime of the products is increas-

ing with σ and, therefore, the failure probability p(σ) decreases with increasing σ im-

plying that the operating characteristic function is increasing in σ. The minimum values

of n satisfying (10.5.1) are obtained for α = 2, γ = 2, p∗ = 0.75, 0.90, 0.95, 0.99 and

t/σ0 = 1.0, 1.25, 1.50, 1.75, 2.0, 2.5, 3.0 . The results are given in Table 10.2.

If p = G(t;α, γ, σ) is small and n is very large, the binomial probability may be ap-

proximated by Poisson probability with parameter λ = np so that the left side of (10.5.1)

can be written as

L∗(p0) =
c∑
i=0

λi

i!
e−i ≤ 1− p∗ (10.5.2)

where λ = nG(t;α, γ, σ0). The minimum values of n satisfying (10.5.2) are obtained

for the same combination of values as in the binomial case. The results are given in Table

10.3.

For a given value of p∗ and t/σ0, the values of n and c are determined by means of

the operating characteristic function. For some sampling plans, the values of the operating

characteristic function depending on σ/σ0 are displayed in Table 10.4.
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The producers risk is the probability of rejection of the lot when σ ≥ σ0. We can

compute the producers risk by first finding p = G(t;α, γ, σ) and then using the binomial

distribution function. For a specified value of the producers risk say 0.05, one may be

interested in knowing what value of σ or σ
σ0

will ensure a producers risk less than or equal

to 0.05 for a given sampling plan. The value σ and, hence, the value of σ
σ0

is the smallest

positive number for which the following inequality holds

L(p0) =
c∑
i=0

(
n

i

)
pi0(1− p0)n−i ≥ 0.95 (10.5.3)

For some sampling plan (n, c, t
σ0

) and values of p∗, minimum values of σ
σ0

satisfying

(10.5.3) are given in Table 10.5.

10.6 Description of the Tables and their Application

Assume that the lifetime distribution is Negative Binomial Marshall-Olkin Rayleigh distribu-

tion with α = 2 and γ = 2. Suppose that the experimenter is interested in establishing

that the true unknown average life is at least 1000 hours with confidence p∗ = 0.75. It is

desired to stop the experiment at t = 1000hrs. Then, for an acceptance number c = 2, the

required n in Table 10.2 is 21. If during 1000hrs, no more than 2 failures out of 21 are ob-

served, then the experimenter can assert, with a confidence level of 0.75 that the average

life is at least 1000hrs. If the Poisson approximation to binomial probability is used, the

value of n from Table 10.3 is 22. For this sampling plan (n = 21, c = 2, t/σ0 = 1.00) un-

der the Negative Binomial Marshall-Olkin Rayleigh distribution the operating characteristic

values from Table 10.4 are

σ
σ0

2 4 6 8 10 12

L(p) 0.7061 0.9872 0.9981 0.9995 0.9998 0.9999

From Table 10.5, we can get the value of σ
σ0

for various choices of c, σ
σ0

in order that the

producers risk may not exceed 0.05. Thus in the above example the value of σ
σ0

is 0.89 for
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c = 2, σ
σ0

= 1.0, p* = 0.75. That is, the product should have an average life of 0.89 times

the specified mean life of 1000hrs in order that under the above acceptance sampling plan,

the product is accepted with probability 0.95. The actual average life necessary to accept

95% of the lots is provided by Table 10.5.

Consider the following ordered failure times of the release of a software given in terms

of hours from starting of the execution of the software upto the time at which a failure of the

software occurs (Wood, 1996). This data can be regarded as an ordered sample of size n

= 11 with observations with observations {xi, i = 1, 2, ...11} = {519, 968, 1430,1893,2490,

3058, 3625,4422, 5218, 5823, 6539}

Let the required average lifetime be 1000 hours and the testing time be t = 1500

hours, which leads to a sample size n = 11 with a corresponding ratio of t
σ0

= 1.5 and an

acceptance number c = 3 which are obtained from Table 10.2 for p∗ = 0.75. Therefore,

the sampling plan for the above sample data is (n = 11, c = 3, t
σ0

= 1.5). Based on the

observations, we have to decide whether to accept the product or reject it. We accept the

product only, if the number of failures before 1500 hours is less than or equal to 3. From

the given ordered sample we notice that the earliest failures of the software product are

at 519 , 968 and 1430 hours, which are less than 1500 hours. Therefore we accept the

product.

10.7 Conclusion

In this chapter we consider the Negative Binomial Marshall-Olkin Rayleigh distribution.

Properties of the new distribution are investigated. Maximum likelihood estimates are ob-

tained. The use of the model in lifetime modeling is established by fitting it to a real data

set on remission times of bladder cancer patients. The results are given in Table 10.1. A

reliability test plan is developed when the life times of the items follow NBMOR distribution.

The results are illustrated by a numerical example. Table 10.2 gives minimum sample size

for the specified ratio t
σ0

, confidence level p∗, acceptance number c, α = 2, γ = 2 using

binomial approximation. Table 10.3 gives minimum sample size for the specified ratio t
σ0

,
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Table 10.2: Minimum sample size for the specified ratio t/σ0, confidence level p∗, ac-
ceptance number c, α = 2, γ = 2 using binomial approximation.

p* c t/σ0
1.00 1.25 1.50 1.75 2.00 2.50 3.00

.75 0 7 4 3 2 2 1 1

.75 1 14 9 6 4 3 2 2

.75 2 21 13 9 6 5 4 3

.75 3 27 17 11 8 7 5 4

.75 4 34 21 14 10 8 6 5

.75 5 40 25 17 12 10 7 6

.75 6 46 28 19 14 11 8 7

.75 7 52 32 22 16 13 10 8

.75 8 58 36 24 18 14 11 9

.75 9 64 40 27 20 16 12 11

.75 10 70 43 29 22 17 13 12

.90 0 12 7 5 3 2 2 1

.90 1 20 12 8 6 4 3 2

.90 2 28 17 11 8 6 4 3

.90 3 35 21 14 10 8 5 5

.90 4 24 26 17 12 9 7 6

.90 5 49 30 20 14 11 8 7

.90 6 56 34 23 16 13 9 8

.90 7 62 38 25 18 14 10 9

.90 8 69 42 28 20 16 12 10

.90 9 75 46 31 22 18 13 11

.90 10 82 50 34 24 19 14 12

.95 0 15 9 6 4 3 2 1

.95 1 24 15 10 7 5 3 3

.95 2 33 20 13 9 7 5 4

.95 3 40 24 16 11 9 6 5

.95 4 48 29 19 14 10 7 6

.95 5 55 33 22 16 12 8 7

.95 6 62 38 25 18 14 10 8

.95 7 69 42 28 20 15 11 9

.95 8 76 46 31 22 17 12 10

.95 9 83 50 34 24 19 13 11

.95 10 89 54 36 26 20 15 12

.99 0 23 14 9 6 4 3 2

.99 1 34 20 13 9 7 4 3

.99 2 43 26 17 12 9 6 4

.99 3 52 31 20 14 11 7 5

.99 4 60 36 24 17 12 8 7

.99 5 68 41 27 19 14 10 8

.99 6 76 45 30 21 16 11 9

.99 7 83 50 33 23 18 12 10

.99 8 91 55 36 26 20 13 11

.99 9 99 59 39 28 21 15 12

.99 10 105 64 42 30 23 16 13
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Table 10.3: Minimum sample size for the specified ratio t/σ0, confidence level p∗, ac-
ceptance number c, α = 2, γ = 2 using Poisson approximation.

p* c t/σ0
1.00 1.25 1.50 1.75 2.00 2.50 3.00

0.75 0 8 5 4 3 2 2 2
0.75 1 15 10 7 5 4 4 3
0.75 2 22 14 10 7 6 5 5
0.75 3 28 18 12 9 8 6 6
0.75 4 35 22 15 12 9 8 7
0.75 5 41 26 18 14 11 9 8
0.75 6 47 30 21 16 13 10 9
0.75 7 53 33 23 18 14 11 10
0.75 8 59 37 26 20 16 13 12
0.75 9 66 41 28 21 17 14 13
0.75 10 72 45 31 23 19 15 14
0.90 0 13 8 6 5 4 3 3
0.90 1 22 14 10 7 6 5 5
0.90 2 30 19 13 10 8 6 6
0.90 3 37 23 16 12 10 8 7
0.90 4 44 28 19 15 12 9 9
0.90 5 51 32 22 17 14 11 10
0.90 6 58 36 25 19 16 12 11
0.90 7 65 41 28 21 17 14 13
0.90 8 71 45 31 23 19 15 14
0.90 9 78 49 34 26 21 16 15
0.90 10 85 53 37 28 22 18 16
0.95 0 17 11 8 6 5 4 4
0.95 1 26 17 12 9 7 6 5
0.95 2 35 22 16 12 9 8 7
0.95 3 43 27 19 14 12 9 8
0.95 4 50 32 22 17 14 11 10
0.95 5 58 36 25 19 15 12 11
0.95 6 65 41 28 21 17 14 13
0.95 7 72 45 31 24 19 15 14
0.95 8 79 50 34 26 21 17 15
0.95 9 86 54 37 28 23 18 17
0.95 10 93 58 40 30 25 20 18
0.99 0 26 16 11 9 7 6 5
0.99 1 37 23 16 12 10 8 7
0.99 2 46 29 20 15 12 10 9
0.99 3 55 35 24 18 15 12 11
0.99 4 64 40 28 21 17 14 12
0.99 5 72 45 31 24 19 15 14
0.99 6 80 50 35 26 21 17 16
0.99 7 89 55 38 29 23 18 17
0.99 8 95 60 42 31 25 20 18
0.99 9 103 64 45 34 27 22 20
0.99 10 110 69 48 36 29 23 21
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Table 10.4: Values of the operating characteristic function of the sampling
plan(n, c, t/σ0) for a given p∗ with α = 2, γ = 2.

p* n c t/σ0 σ/σ0
2 4 6 8 10 12

0.75 21 2 1.00 0.7061 0.9872 0.9981 0.9995 0.9998 0.9999
0.75 13 2 1.25 0.7179 0.9900 0.9987 0.9997 0.9999 0.9999
0.75 9 2 1.50 0.7122 0.9913 0.9990 0.9998 0.9999 0.9999
0.75 6 2 1.75 0.7632 0.9944 0.9994 0.9999 0.9999 0.9999
0.75 5 2 2.00 0.7152 0.9936 0.9993 0.9999 0.9999 0.9999
0.75 4 2 2.50 0.5607 0.9895 0.9991 0.9998 0.9999 0.9999
0.75 3 2 3.00 0.5637 0.9908 0.9993 0.9999 0.9999 0.9999
0.90 28 2 1.00 0.5299 0.9723 0.9957 0.9987 0.9994 0.9997
0.90 17 2 1.25 0.5525 0.9787 0.9972 0.9993 0.9997 0.9999
0.90 11 2 1.50 0.5851 0.9840 0.9981 0.9995 0.9998 0.9999
0.90 8 2 1.75 0.5781 0.9859 0.9985 0.9997 0.9999 0.9999
0.90 6 2 2.00 0.5840 0.9880 0.9988 0.9998 0.9999 0.9999
0.90 4 2 2.50 0.5607 0.9895 0.9991 0.9998 0.9999 0.9999
0.90 3 2 3.00 0.5637 0.9908 0.9993 0.9999 0.9999 0.9999
0.95 33 2 1.00 0.4169 0.9576 0.9931 0.9979 0.9991 0.9995
0.95 20 2 1.25 0.4390 0.9670 0.9954 0.9988 0.9995 0.9998
0.95 13 2 1.50 0.4663 0.9744 0.9969 0.9993 0.9997 0.9999
0.95 9 2 1.75 0.4907 0.9799 0.9977 0.9995 0.9998 0.9999
0.95 7 2 2.00 0.4623 0.9801 0.9980 0.9996 0.9999 0.9999
0.95 5 2 2.50 0.3543 0.9766 0.9977 0.9996 0.9999 0.9999
0.95 4 2 3.00 0.2475 0.9689 0.9973 0.9995 0.9999 0.9999
0.99 43 2 1.00 0.2418 0.9191 0.9857 0.9955 0.9979 0.9988
0.99 26 2 1.25 0.2597 0.9356 0.9903 0.9973 0.9989 0.9995
0.99 17 2 1.50 0.2760 0.9477 0.9930 0.9983 0.9993 0.9997
0.99 12 2 1.75 0.2784 0.9549 0.9945 0.9987 0.9996 0.9999
0.99 9 2 2.00 0.2696 0.9591 0.9954 0.9990 0.9997 0.9999
0.99 6 2 2.50 0.2095 0.9582 0.9978 0.9992 0.9998 0.9999
0.99 4 2 3.00 0.2475 0.9689 0.9973 0.9995 0.9999 0.9999
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Table 10.5: Minimum ratio of true σ and required σ0 for the acceptability of a lot with
producer’s risk of 0.05 for α = 2 and γ = 2

p* c t/σ0
1.00 1.25 1.50 1.75 2.00 2.50 3.00

0.75 0 0.90 1.13 1.35 1.57 1.80 2.25 2.69
0.75 1 0.89 1.12 1.34 1.55 1.75 2.15 2.56
0.75 2 0.89 1.11 1.33 1.52 1.73 2.13 2.46
0.75 3 0.89 1.11 1.32 1.51 1.72 2.08 2.37
0.75 4 0.89 1.10 1.31 1.50 1.68 2.02 2.33
0.75 5 0.88 1.10 1.30 1.48 1.67 1.98 2.22
0.75 6 0.88 1.09 1.29 1.48 1.66 1.94 2.17
0.75 7 0.88 1.09 1.29 1.47 1.64 1.94 2.13
0.75 8 0.88 1.09 1.28 1.46 1.62 1.92 2.11
0.75 9 0.88 1.09 1.28 1.46 1.62 1.89 2.20
0.75 10 0.88 1.09 1.28 1.45 1.61 1.87 2.18
0.90 0 0.90 1.13 1.35 1.57 1.79 2.25 2.69
0.90 1 0.90 1.12 1.34 1.56 1.77 2.19 2.57
0.90 2 0.89 1.11 1.33 1.55 1.74 2.12 2.46
0.90 3 0.89 1.11 1.32 1.52 1.73 2.08 2.44
0.90 4 0.89 1.10 1.31 1.51 1.70 2.06 2.43
0.90 5 0.89 1.10 1.31 1.50 1.69 2.02 2.37
0.90 6 0.89 1.10 1.31 1.49 1.68 1.99 2.34
0.90 7 0.89 1.10 1.30 1.48 1.67 1.97 2.29
0.90 8 0.88 1.09 1.29 1.48 1.66 1.96 2.24
0.90 9 0.88 1.09 1.29 1.47 1.65 1.95 2.22
0.90 10 0.88 1.09 1.28 1.47 1.63 1.92 2.15
0.95 0 0.90 1.13 1.35 1.58 1.80 2.25 2.68
0.95 1 0.90 1.12 1.34 1.56 1.78 2.19 2.62
0.95 2 0.89 1.11 1.33 1.55 1.75 2.17 2.56
0.95 3 0.89 1.11 1.32 1.53 1.74 2.12 2.50
0.95 4 0.89 1.11 1.32 1.52 1.71 2.06 2.43
0.95 5 0.89 1.10 1.32 1.52 1.70 2.03 2.38
0.95 6 0.89 1.10 1.31 1.51 1.70 2.03 2.33
0.95 7 0.89 1.10 1.31 1.50 1.68 1.99 2.27
0.95 8 0.89 1.10 1.30 1.49 1.67 1.98 2.22
0.95 9 0.88 1.09 1.30 1.48 1.67 1.94 2.20
0.95 10 0.88 1.09 1.29 1.48 1.64 1.97 2.18
0.99 0 0.90 1.13 1.35 1.58 1.80 2.25 2.69
0.99 1 0.90 1.13 1.34 1.56 1.79 2.22 2.63
0.99 2 0.90 1.12 1.34 1.56 1.78 2.18 2.56
0.99 3 0.89 1.11 1.33 1.55 1.75 2.15 2.50
0.99 4 0.89 1.11 1.33 1.53 1.74 2.11 2.47
0.99 5 0.89 1.11 1.32 1.53 1.72 2.09 2.43
0.99 6 0.89 1.11 1.32 1.52 1.71 2.07 2.40
0.99 7 0.89 1.11 1.31 1.51 1.70 2.04 2.36
0.99 8 0.89 1.10 1.31 1.51 1.70 2.01 2.33
0.99 9 0.89 1.10 1.30 1.50 1.68 2.01 2.29
0.99 10 0.89 1.10 1.31 1.49 1.68 1.98 2.27
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confidence level p∗, acceptance number c, α = 2, γ = 2 using Poisson approximation. Ta-

ble 10.4 gives values of the operating characteristic function of the sampling plan (n, c, t
σ0

for given confidence level p∗ with α = 2, γ = 2. Table 10.5 gives Minimum ratio of true σ

and required σ0 for the acceptability of a lot with producer’s risk of 0.05 for α = 2, γ = 2.
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